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Abstract 

The new tax reforms have been an important support triggering the process of engagement of 

informal units with their tax administration. The latter has put in place various corrective 

measures to contain and mitigate the unfavorable consequences on the companies that make up 

the national economic fabric. In other words, the multilateral collaboration between the formal 

production units and the tax administration has allowed a successful economic recovery, 

increasing the resilience of enterprises during the coronavirus epidemic. However, the 

introduction of these new tax reforms, characterized by a downward trend in taxes, has triggered 

the willingness of production units operating in the informal sector to submit to the tax 

authorities, seizing the opportunity of the new tax bases to encourage everyone to pay taxes and 

improve the relationship between taxpayers and the administration. Nevertheless, this article 

will focus on the prediction of the act of engagement of informal units with the tax 

administration after the new tax reforms during the Covid-19 epidemic. This study will 

mobilize one of the extensions of generalized linear models, such as the binary logistic 

regression model. 

Keywords: « Tax reforms », « Engagement act », « Generalized linear models », « Binary 

logistic regression », « the covid-19 epidemic ». 

 

Résumé  

Les nouvelles réformes fiscales ont été un appui important pour déclencher le processus 

d'engagement des unités informelles avec leur administration fiscale. Cette dernière a mis en 

place diverses mesures correctives pour contenir et atténuer les conséquences défavorables sur 

les entreprises composant le tissu économique national. En d'autres termes, la collaboration 

multilatérale entre les unités de production formelles et l'administration fiscale a permis une 

relance économique réussie, augmentant la résilience des entreprises pendant l'épidémie de 

coronavirus. Cependant, l'introduction de ces nouvelles réformes fiscales, caractérisées par une 

tendance à la baisse des impôts, a déclenché la volonté des unités de production opérant dans 

le secteur informel de se soumettre à l'administration fiscale, saisissant l'opportunité des 

nouvelles bases d'imposition. Néanmoins, cet article se concentrera sur la prédiction de l'acte 

d'engagement des unités informelles avec l'administration fiscale après les nouvelles réformes 

fiscales pendant l'épidémie de Covid-19. Cette étude mobilisera une des extensions des modèles 

linéaires généralisés, comme le modèle de régression logistique binaire. 

Mots-clés : « Réformes fiscales », « acte d'engagement », « modèles linéaires généralisés », 

« régression logistique binaire », « l'épidémie de covid-19 ». 
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1. INTRODUCTION 

Unprecedented in recent history, the coronavirus has caused a health crisis and a collapse of 

economic activity on a global scale. In this unfortunate context, the public authorities have 

introduced several sanitary measures with the ultimate motive of mitigating the spread of 

Covid-19, reducing the number of newly infected people, limiting the pressure on health 

systems, and preventing a new epidemic outbreak while restarting economic activity and 

increasing the immunity of production units to the risks of the resurgence of the epidemic. The 

measures implemented had negative economic repercussions that sharply impacted the supply 

and demand side of the economies (Guerrieri et al., 2020). In other words, these remedial 

measures have hampered domestic consumption, investment, and net foreign demand, causing 

a monthly decline in the gross domestic product (GDP) of 2% of annual GDP according to the 

organization for economic cooperation and development estimates (2020). 

There are many challenges for the national economy. The public authorities have tried to limit 

the negative consequences of containment measures affecting households and businesses and 

adapting to the risks presented by the epidemic. Also, to support the economic recovery by 

putting in place expansive plans to revive the economic activity on the national field. To build 

confidence and increase the resilience of production units, the tax authorities have approved 

several decisive measures to contain and mitigate the coronavirus epidemic’s fallout from the 

health and economic crisis. In this context, a multilateral collaboration between public 

authorities and local production units would be crucial to ensure recovery and increase the 

resilience of the national economy to future shocks. 

To adapt tax rules to the national context, policymakers have attempted to implement various 

cyclical corrective measures such as accelerating the allowable depreciation, income tax cuts, 

major corporate tax reforms, capital gains tax reductions, accelerated value-added tax refunds, 

etc. Nevertheless, these reforms accompanying the covid-19 health crisis have resulted in a 

contraction of tax revenues, thus widening the ordinary budget deficit. On the other hand, 

several companies operating in the informal sector have seized this opportunity to register with 

their tax authorities, taking direct advantage of the tax reforms characterized by a downward 

trend in taxes and duties with the ultimate aim of boosting economic activity and easing 

disbursements for national production units.  
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The derogatory measures undertaken by the Moroccan authorities, more precisely, by the 

Council of Economic Watch (CVE.), have for mission to adapt the tax system of rigor to the 

hazards of this heavy carried which tossed to the world economy, notably, to that Moroccan. 

Where the informal sector is of weight. The aforementioned measures concern the companies 

in a general way that the professionals. The first key measure observed is the postponement of 

the legal deadlines for corporate income tax and income tax (IR). Not to mention some 

incidental incentives such as the spreading of the deductibility of support donations to the 

COVID-19 fund over 5 years in order to reduce the impact on the tax result. On the other hand, 

eligible taxpayers must be "in difficulty", as this notion is defined by regulation and applicable 

exclusively to the period of the state of a health emergency. The extension of the state of 

emergency throughout the country until February 28, 2023, is proof of this. 

In terms of IR, any additional allowance paid to employees (affiliated to the CNSS) by their 

employers is exempt, up to a limit of 50% of the average net monthly salary, excluding bonuses 

and annual premiums. This measure was extended by the 2022 Finance Act. In 2023, the 

legislator has conditioned the obtaining of this benefit by the following conditions: 

▪ the employee must be hired during the year 2021; 

▪ the employee must have benefited from the fund for loss of employment in accordance 

with the provisions of law n° 03-14 modifying and completing the Dahir bearing law n° 

1-72-184 of 15 Joumada II 1392 (July 27, 1972) relating to the social security system; 

▪ the employee cannot benefit twice from the above-mentioned exemption; 

To this end, the CVE press release specifies that this preferential measure was aimed 

particularly at employees who received the 2,000 Dirham compensation for work stoppage 

following the consequences of the health crisis. In addition, the exceptional measures were 

spread over the interest rate of the credit interests applicable to the current account of credit 

partners which depends on the vast movement of decrease of the rates noted in particular of the 

short-term credits granted by the credit institutions, especially for the years post-COVID-19. 

 In this furrow, our prospection will analyze the impact of the tax reforms at the level of the 

corporate tax, the income tax, and the tax on the added value of the act of engagement of the 

informal units during the epidemic coronavirus covid-19. This study will focus on the use of 

generalized linear models, specifically the binary logistic regression model. Generalized linear 

models are defined as a development of the general linear model, allowing model responses 
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that are not normally distributed. These models have been developed in response to the 

shortcomings of classical linear models. In other words, these models are limited to describing 

the relationship between a variable to be explained and explanatory variables, to test the 

significance and compare the intensity of the impact of each independent variable on the 

variability of the dependent variable. Throughout this paper, we make explicit an attempt to 

model the act of engagement of informal units with the tax administration triggered by the tax 

reforms introduced during the covid-19 health pandemic in Morocco. In other words, what 

would be the decision of informal units after the new tax bases during the crisis towards 

their tax authorities? To answer this question, we will use the binary logistic regression 

method, which is one of the most important extensions of generalized linear models. 

For this article, we are content to undertake a quantitative study to assess the impact of each tax 

reform on the engagement decision of informal economic groups. For this, we start with an 

introduction explaining the interest, the context and the tax reforms implemented, the 

methodology used, the results obtained, and finally, a general conclusion synthesizing the entire 

study. 

2. METHODOLOGY 

Being a set of statistical models used to analyze the relationship of a variable to one or more 

others, the Generalized Linear Models (GLM), usually known by their English initials, operate 

as adequate tools to estimate the parameters of the model used in the most impartial way 

possible. These models are understood as a development of the general linear model, where the 

dependent variable or variable to be explained is linearly related to the independent variables 

via a precise link function. They cover statistical models such as linear regression for normally 

distributed responses, logistic models for binary or dichotomous data, log-linear models for 

headcount data, complementary log-log models for interval-censored survival data, etc. 

However, they have been used to address the shortcomings of linear models. In other words, the 

latter is limited to describing the relationship between a variable to be explained and explanatory 

variables, to test the significance and compare the intensity of the impact of each independent 

variable on the variability of the dependent variable. 

The Generalized Linear Model (GLM), is a more flexible device compared to the linear model, 

agreeing to cross the four assumptions mentioned above, in a process of treatment of the 

observations, to realize a relevant estimation of the parameters of the model and to test the 
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hypotheses conceived in a motive of exploring the quality of the latter. These models were 

introduced and defined by (Nelder John Ashworth, and Robert Wedderburn 1972) stating that 

they "allow us to model responses that are not normally distributed, using methods closely 

analogous to linear methods for normal data. However, (Anderson Duncan, Sholom Feldblum, 

Claudine Modlin, Doris Schirmacher, Ernesto Schirmacher, and Neeza Thandi 2004), present 

in detail, the concepts of the density function, the exponential distribution function, the form of 

the moment-generating function, and the specific types of the family of exponential distribution 

functions such as Gamma, Poisson, Bernoulli, Dirichlet, Exponential, Normal, Chi-square, Beta, 

and so on. We explain throughout this article, the generalized linear models, and a brief 

application of one of its extensions namely, the binary logistic regression. 

A generalized linear model is an extension of the classical general linear model, so linear models 

are a suitable starting point for the introduction of generalized linear models. The linear 

regression model is characterized by four essential elements such as the column vector of 

dimension (n) of the dependent random variables (Y), a systematic component defined as a 

matrix of size (np), and rank (p), called the design matrix X = 𝑋1 , 𝑋2 , … , 𝑋𝑝 , grouping together 

the column vectors of the explanatory variables, also known as the control variables 

endogenous, or independent, where (𝑥𝑖 ) is the row vector of these explanatory variables 

associated with the observation (i) such that, i = 1, 2, …n, () the column vector of dimension 

p of the unknown parameters of the model, i.e. the unknown regression coefficients associated 

with the column vector of the matrix (X), and finally, the vector  dimension n of the errors (). 

The data are assumed to be drawn from observations of a statistical sample of size n  

 (𝑝+1)(where n > p+1). However, linear models seem to be based on a set of assumptions such 

as (i) 𝑖  are error terms, of a variable E, unobserved, independent, and identically distributed, 

noting that E(𝑖 )=0, (ii) the V(𝑖 )= 
2. I, about the character of homoscedasticity, referring to a 

constant stochastic error variance of the regression, i.e., identical dispersion for each i, (iii) the 

normality of the distribution of the error random variable  noting: 𝑖  𝑁𝑛  (0,  2𝐼𝑛 ) We can 

also consider that 𝑖  is an observation of the random variable E, also distributed according to a 

normal distribution, noting that  𝑖  𝑁  (0,  2, (iv) the n real random variables 𝑖  are considered 

independent, i.e. 𝑖 is independent of 𝑗  for i j, (v) y𝑖  is an observation of Y of normal 

distribution, such that, 𝑌 𝑁𝑛  ( X,  2𝐼𝑛 ). The linear regression model is defined by an 

equation of the form: 
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Y=  X +       with       𝑁𝑛  (0,  2𝐼𝑛 )  

Where: 

- Y  (𝑛) 

- X  𝑀(𝑛,𝑝)  known, deterministic, with rank p  

-    (𝑝), unknown 

-  2  (∗+), unknown 

 

In statistics, generalized linear models is an extraordinarily flexible generalization of ordinary 

linear regression, which takes into account dependent variables, called responses, that have 

distribution patterns other than the normal distribution. GLM generalizes linear regression by 

allowing the linear model to be related to these response variables by a (g) link function. This 

mechanism was founded by (John Nelder and Robert Wedderburn 1972), who were able to 

formulate generalized linear models to unify various other statistical models, including linear 

regression, logistic regression, Poisson regression, etc. However, the model's linear predictor or 

deterministic component is a quantity with the skill and ability to incorporate information about 

the independent variables into the model. It is linked to the expected value of the data thanks to 

the linking function (g). This linear predictor noted 𝜂 is expressed in the form of linear 

combinations of the unknown parameters  and the matrix of column vectors of the explanatory 

variables X (see the works of Denuit M. and Charpentier A. (2005), J-J. Droesbeke, Lejeune M., 

and Saporta G. (2005)). 𝜂 can thus be expressed as: 

 

𝜂 =  X 

 

The normality of the response variable Y, such that, 𝑌 𝑁𝑛  ( X,  2𝐼𝑛 ), for any observation i, 

allows us to write, E(Y) = βX, and to note E(Y) = μ for simplification reasons. Thanks to the link 

function (g), it is possible to establish a non-linear relationship between the expectation of the 

response variable E(Y) and the explanatory variable(s) and to apprehend observations and 

responses of diversified natures, such as the example of binary data of failures/successes, 

frequencies of successes of the treatments, lifetimes, etc., by noting that: 

 

g (E(Y)) = g(μ) = η = βX 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As mentioned in the work of (Esbjörn Ohlsson, and Björn Johansson 2010), we can also write 

that:  

E(Y) = μ = g
−1

(η)   

The linkage function (g) states the relationship between the linear predictor η and the mean of 

the distribution function μ. There are many commonly used link functions, and their choice is 

based on several considerations. There is always a well-defined canonical link function that is 

derived from the exponential response density function (Y). However, in some cases, it makes 

sense to try to match the domain of the link function to the range of the mean of the distribution 

function. A linkage function transforms the probabilities of a category response variable into a 

continuous unbounded scale. Once the transformation is complete, the relationship between the 

η predictors and the response can be modeled using linear regression. For example, a 

dichotomous response variable may have two unique values. Converting these values to 

probabilities causes the response variable to vary between 0 and 1. When an appropriate linkage 

function is chosen to be applied to the probabilities, the resulting numbers are between − ∞ and 

+ ∞. However, any probability law of the random component Y has associated with it a specific 

function of the expectation called the canonical parameter. For the normal distribution, it is the 

expectation itself. For the Poisson distribution, the canonical parameter is the logarithm of the 

expectation. For the binomial distribution, the canonical parameter is the logit of the probability 

of success. In the family of generalized linear models, the functions using these canonical 

parameters are called canonical link functions. In most cases, generalized linear models are built 

using these link functions. Below is a table of several commonly used exponential family 

distributions, the data for which they are commonly used, and the canonical link functions and 

their means.  
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Table Nº1: Laws of the exponential family and their canonical links 

Y distribution Canonical links Means 

Normal distribution N(μ, σ2) 
Identity: η = μ μ = βX 

Bernoulli distribution B(μ) 

Logit: η = 

ln(μ/(1 − μ)) 
μ = 1/(1 + exp−(βX) ) 

Poisson distribution P(μ) Log: η = ln(μ) μ = exp(βX) 

Gamma distribution G(μ, v) 

Inverse: 

η = 1/(μ) 
μ = (βX)−1 

Gaussian Inverse distribution 

I.G (μ, λ) 
Inverse carré : η = 1/(μ2) μ = (βX)−2 

Source: Author 

2.1. Probability law of the response variable Y  

The inadequacy of the so-called classical general linear model, of the laws that it associates with 

the response variables, leads us to use generalized linear models (GLM), which allow us to 

connect other laws than the normal law, such as Bernoulli’s law, the binomial law, Poisson’s 

law, Gamma law, etc. These laws are part of the exponential family, offering a common 

framework for estimation and modeling. These laws are part of the exponential family, offering 

a common framework for estimation and modeling. This natural exponential family has laws 

that are written in exponential form, which allows us to unify the presentation of results. Let fY 

be the probability density of the response variable Y. We can admit that fY belongs to the natural 

exponential family if it is written in the form:  

f (Y/ θ,φ,ω ) = exp (
𝑌𝜃−b(𝜃)

𝑎()
 ω + c (Y,φ,ω)), Y ∈S  

With: 

▪ a(.), b(.), c(.): Functions specified according to the type of the exponential family considered.  

▪ θ: Natural parameter, also called canonical parameter or mean parameter.  

▪ φ: Parameter of dispersion. This parameter may not exist for some laws of the exponential 

family, in particular when the law of Y depends only on one parameter (in these cases φ = 1). 

Otherwise, it is a nuisance parameter that must be estimated. As its name indicates, this 

parameter is related to the variance of the law. It is also a very important parameter in that it 
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controls the variance and therefore the risk. In some cases, a weighting is necessary to grant 

relative importance to the different observations and the parameter φ is replaced by φ/ω, where 

ω designates a weight known as a priori.  

▪ S: Subset of R or N  

▪ ω: The weights of the observations.  

Moreover, if fY , belongs to the natural exponential family, we can deduce the following 

properties:  

• E[Y] = μ = b′(θ) = ∂b(θ)/∂(θ)  

• V[Y] = a(φ) × b′′(θ) = a(φ) × ∂2b(θ)/∂(θ)2  

• g(μ) = g(b′(θ)) = βX  

 

With: b′(θ) = g−1(βX) and θ = η = βX  

For a probability law to belong to the natural exponential family, it is sufficient to write it as an 

exponential function and determine its terms. We try below to propose some examples of 

commonly used probability laws, and explain all their components (See the works of Michel 

Denuit, and Arthur Charpentier (2005). 

▪ The Gaussian distribution, with mean μ and variance σ2. Y ∼ N (μ, σ2) belongs to the 

exponential family, with θ = μ, φ = σ2, a(φ) = φ, b(θ) = θ2/2, and c (Y,φ, ω) = −1/2 (y2/σ2 

+ ln(2πσ2)), where Y ∈ R.  

▪ The Bernoulli distribution, with mean π, and variance π( 1-π). Y ∼ B(π) is catalogued 

among the exponential family, with θ = ln {π/(1-π)}, φ = 1, a(φ) = 1, b(θ) = ln ( 1+ 

exp(θ)), and c (Y,φ, ω) = 0 where Y ∈ N .  

▪ The Poisson distribution, with mean λ, and variance λ. Y ∼ P(λ), is part of the 

exponential family, with θ = ln(λ), φ = 1, a(φ) = 1, b(θ) = exp(θ) = λ, et c (Y,φ,ω) = 

−ln(λ!) with Y ∈ N .  

▪ The Gamma distribution, with mean μ and variance v−1. Y ∼ G(μ, v), also joins the 

exponential family, with θ = −1/μ, φ = v−1, a(φ) = φ, b(θ) = − ln(−θ), and c(Y,φ,ω) 

=((1/φ)-1) ln(Y )- ln(Γ(1/φ)) where Y ∈ R+.  
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Table Nº 2: Components of the exponential family of usual probability laws  

Y distribution θ(μ ) φ a(φ) b(θ) c (Y,φ,ω) 

Normal distribution 

N (μ, σ2) 
μ σ2 φ θ2/2 − ½ (y2/σ2 +ln(2πσ2)) 

Bernoulli 

distribution B(μ) 

 

ln{μ/(1-μ)} 
1 1 

ln ( 1+ 

exp(θ)) 
0 

Poisson distribution 

P(μ) 
ln(μ) 1 1 exp(θ) − ln (Y !) 

Gamma distribution 

G(μ, v) 
−1/μ 1/v φ −ln(−θ) ((1/ φ) − 1) ln (Y) -ln(Γ(1/ φ)) 

Gaussian Inverse 

distribution I.G (μ, 

λ) 

−1/2μ2 σ2 φ −(−2θ)1/2 −1/2 (ln(2πφY3) + 1/ φ Y) 

Source: Author 

Table Nº 3: Expectation and variance of usual probability laws 

Y distribution μ = E(Y) =b’(θ) V(Y) = a(φ)b”(θ) 

Normal distribution N(μ, σ2) θ σ2 

Bernoulli distribution B(μ) exp(θ)/((1+exp(θ) μ(1-μ) 

Poisson distribution P(μ) exp(θ) μ 

Gamma distribution G(μ, v) −1/θ μ2/v 

Gaussian Inverse distribution I.G (μ, λ) μ μ3/λ 

Source: Author 

The two tables above summarize respectively, the different components of the exponential 

family for usual probability laws, as well as their expectation and variance, assuming that the 

weight ω = 1.  

2.2.  Parameters estimation  

At this stage, it is a question of estimating the column vector 𝛽 = (𝛽0, 𝛽1,  ⋯, 𝛽𝑝) noted (𝛽0̂, 𝛽1̂,  

⋯, 𝛽�̂�) of dimension p of the unknown parameters of the model, i.e. the unknown 

regression coefficients associated with the column vectors of the matrix (X) representing a set 

of explanatory variables, by maximizing the natural log-likelihood of the generalized linear 

model. This estimation applies to all laws with a distribution belonging to the exponential family 

of the form:  
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f (Y/ θ, φ, ω) = exp (
𝑌𝜃−b(𝜃)

𝑎()
 ω + c (Y, φ, ω)),  Y ∈S 

 

The main idea of the maximum likelihood method is to look for the parameters’ value that 

maximizes the probability of having observed what we observed. Moreover, the standard 

approach to finding the maximum of any function of several variables consists in canceling its 

gradient (first derivative) and checking that it’s hessian (second derivative) is negative. 

However, to obtain the maximum likelihood estimator (L), we solve the following system of p 

unknowns 𝛽: 

∂ln𝐿(𝛽) 

∂𝛽1
= 0 

⋮ 

∂ln𝐿(𝛽) 

∂𝛽𝑝
= 0 

Let n be independent variables 𝑌𝑖,  with i = 1⋯, n of law belonging to the exponential family, X 

the design matrix, where are arranged the observations of p column vectors representing the 

explanatory variables, β the column vector of p parameters of the model, η the linear predictor 

with n components noted η = βX, g the link function, is supposed to be monotonic and 

differentiable such that, η = g(μ), as well as the canonical link function, is expressed by g(μ) = 

θ. For n observations assumed to be independent, and taking into account the link between θ 

and β, the likelihood (L) and the natural logarithm of the likelihood (ℓ) are written as follows:  

L (Y, θ, 𝜙, ω) = ∏ f (𝑌𝑖 , θ𝑖 , 𝜙, ω)
𝑛
𝑖=1  

ℓ (Y, θ, 𝜙, ω) = ln (L (Y, θ, 𝜙, ω)) = ln (∏ f (𝑌𝑖 , θ𝑖 , 𝜙, ω)
𝑛
𝑖=1 ))  

= ∑ ln (f (𝑌𝑖 , θ𝑖 , 𝜙, ω)) 
𝑛
𝑖=1  =  ∑  ℓ𝑖(𝑌𝑖 , θ𝑖 , 𝜙, ω) 

𝑛
𝑖=1  

With:  

ℓ𝑖 = 
𝑌𝑖 𝜃𝑖−𝑏(θi)

a𝑖 (𝜙)
 ω + c (𝑌𝑖 , 𝜙,ω), and  θ𝑖 =  𝛽𝑗 . 𝑥𝑖

𝑇 

Indeed, we try this method to reach the maximum likelihood. The logarithm function is strictly 

increasing, and the likelihood and the natural logarithm of the likelihood reach their maximum 

at the same point. Moreover, the search for the maximum likelihood generally requires the 

calculation of the first derivative of the likelihood, and this is much simpler than the natural log-
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likelihood, in the case of multiple independent observations, since the logarithm of the product 

of the likelihoods is written as the sum of the logarithms of the likelihoods, and it is easier to 

derive a sum of terms than a product. However, the derivative of the natural log-likelihood can 

be realized by solving the following equality:  

𝜕ℓ𝑖

𝜕 𝛽𝑗
 = 

𝜕ℓ𝑖

𝜕θ𝑖
×
𝜕θ𝑖

𝜕μ𝑖
×
𝜕μ𝑖

𝜕η𝑖
×
𝜕η𝑖

𝜕 𝛽𝑗
 

From the above equality, we try to give the meaning of each term of the latter as follows:  

• 
𝜕ℓ𝑖

𝜕θ𝑖
= 
𝑌𝑖 –𝑏′(𝜃𝑖)

a𝑖 (𝜙)
 = 
𝑌𝑖− (μ𝑖)

a𝑖 (𝜙)
 

• 
𝜕μ𝑖

𝜕𝜃𝑖
 = 𝑏′′(𝜃𝑖) = 

𝑉(𝑌𝑖 )

a𝑖 (𝜙)
 

• 
𝜕η𝑖

𝜕 𝛽𝑗
 = 
𝜕(𝛽X𝑖)

𝜕 𝛽𝑗
 = X𝑖𝑗         

And  
𝜕μ𝑖

𝜕η𝑖
  depends on the link function η𝑖 = g(μ𝑖) with η𝑖 =  𝛽𝑗 · X𝑖𝑗          

The partial differential equations are therefore written in the following form:  

𝜕ℓ𝑖

𝜕 𝛽𝑗
 = 
𝑌𝑖− (μ𝑖)

a𝑖 (𝜙)
 × 

 a𝑖 (𝜙)

𝑉 (𝑌𝑖 ) 
 ×

𝜕μ𝑖

𝜕η𝑖
 ×  X𝑖𝑗 

𝜕ℓ(𝑌,𝜃(𝛽),𝜙)

𝜕𝛽𝑗
 = ∑ (

𝑌𝑖 − (μ𝑖)× X𝑖𝑗

𝑉(𝑌𝑖 )
 × 

𝜕μ𝑖

𝜕η𝑖
)𝑛

𝑖=1  = 0, ∀𝑗 = 1,⋯𝑝 

In the case where the link function used coincides with the canonical link function (η𝑖=𝜃𝑖), these 

equations are simplified as follows:  

𝜕ℓ𝑖

𝜕 𝛽𝑗
 = 

𝜕ℓ𝑖

𝜕θ𝑖
×
𝜕θ𝑖

𝜕μ𝑖
×
𝜕μ𝑖

𝜕η𝑖
×
𝜕η𝑖

𝜕 𝛽𝑗
 = 

𝜕ℓ𝑖

𝜕θ𝑖
× 
𝜕θ𝑖

𝜕η𝑖
 ×

𝜕η𝑖

𝜕 𝛽𝑗
 = 

𝜕ℓ𝑖

𝜕θ𝑖
×
𝜕η𝑖

𝜕 𝛽𝑗
 

Thus, the partial differential equations can take the following form:  

𝜕ℓ(𝑌,𝜃(𝛽),𝜙)

𝜕𝛽𝑗
 = ∑ (

𝑌𝑖 − (μ𝑖)

a𝑖 (𝜙)
 ×  X𝑖𝑗)

𝑛
𝑖=1  = 0, ∀𝑗 = 1,⋯𝑝 

However, 𝜇i is unknown, so it is impossible to obtain an analytical expression of the maximum 

likelihood estimator of β by canceling the first derivative (gradient): these equations are called 

transcendental. In other words, they are non-linear β equations whose solution requires iterative 
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optimization methods, such as the Newton-Raphson algorithm referring to the Hessian matrix 

and the Fisher-scoring algorithm referring to the information matrix, whose approach can be 

summarized as follows:  

a. Choose a starting point β0  

b. Put down βk+1 =βk +Ak×∇L(βk)  

c. Shutdown condition : βk+1 ≈ βk  

Or : 

 ∇ L(βk+1) ≈∇ L(βk)  

Ak = −[∇2L(βk)]−1 For Newton-Raphson algorithm  

Ak = −(E[∇2L(βk)])−1 For the iterative Reweighted Least Squares  

 

2.3. Properties of the maximum likelihood estimator and confidence interval  

In general, it is insufficient for a statistician to stop in the estimation phase of the value of the 

regression parameters. However, given that the value of the regression estimator depends 

closely on the sample on which the modeling is done, it is more legitimate to look at the 

confidence interval in which it lies, by setting a confidence level beforehand. Thus, the smaller 

the interval, the more robust the estimate. Let us note 𝛽�̂� the maximum likelihood estimator 

(MLE). This estimator verifies certain properties, under certain classical assumptions of the 

regularity of the probability density, such as:  

▪ 𝛽�̂�: Converges in probability to β, which implies that 𝛽�̂� is asymptotically unbiased.  

▪ 𝛽�̂�: Converges to a normal distribution.  

Indeed, it is possible to write:  

√𝑛(𝛽�̂� − 𝛽) ∼ 𝒩(0, 𝕀𝑛
−1(𝛽)) 

▪ 𝛽�̂�: Estimator of the maximum log-likelihood of 𝛽 = (𝛽0, 𝛽1,  ⋯, 𝛽𝑝)   

▪ 𝕀𝑛
−1(𝛽):  −(𝐸[𝜕ℓ2(𝑌, (𝛽),𝜙)/ 𝜕2𝛽]) is the Fisher information matrix evaluated in β and 𝜙 on 

a sample of size n.   

Let 𝛽�̂� be the estimator of the parameter β such that 𝛽�̂�verifies a central limit theorem, i.e., when 
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n tends to infinity, the random variable of centered reduced Gaussian distribution z tends to the 

value below:   

𝛽�̂�−𝛽

√𝑉(𝛽�̂�)

 ~ 𝑧 

As a way of determining the confidence interval at risk α for 𝛽�̂�: from the bounds (z1−α/2) and 

(−z1−α/2) such that:   

P (−z1−α/2   <
𝛽�̂�−𝛽

√𝑉(𝛽�̂�)

 < z1−α/2)  = 1- α 

If n is large enough, we can suppose that 
𝛽�̂�−𝛽

√𝑉(𝛽�̂�)

  follows approximately a Gaussian distribution 

and F the distribution function of the centered reduced Gaussian distribution, so we can write 

that: 

P (−z1−α/2   <
𝛽�̂�−𝛽

√𝑉(𝛽�̂�)

 < z1−α/2) 

= F(z1−α/2) - F(-z1−α/2) 

= 2 F(z1−α/2) – 1 

With: 

F(-z1−α/2) =1- F (z1−α/2) 

 

We  can then deduce that: 

2 F(z1−α/2) – 1 = 1- α 

z1−α/2 = F
−1

(1−α/2) 

 

So, the bounds of the confidence interval for 𝛽�̂� are written as follows:  

 

𝐵− = 𝛽�̂� − 𝐹
−1((1−α/2) × √𝑉(𝛽�̂�) 

𝐵+ = 𝛽�̂� + 𝐹
−1((1−α/2) × √𝑉(𝛽�̂�) 
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However, an asymptotic confidence interval at the level of 100 ×(1−α) % of the regression 

coefficients β can be designed as follows:  

𝐼. 𝐶𝛽𝑛= [ 𝛽�̂� ± (z1−α/2) × √𝑉(𝛽�̂�) ] 

With: 

z1−α/2  is the quantile at (1 − α/2) of the standard normal distribution, N (0, 1), and 𝑉(𝛽�̂�) is 

the diagonal term of the inverse of the Fisher information matrix. 

2.4 Binary logistic regression, an extension of generalized linear models  

The essays of (Hosmer D. W., and Lemeshow S. 2000) as well as the work of (King G., and 

Zeng L. 2001), underline that logistic regression is understood as a relevant statistical choice, 

for situations in which the occurrence of a binary outcome must be predicted. In addition, (Burns 

R. B., Burns R., Burns, R. P. 2008), and (Muijs D., 2010) have offered clarifications of the steps 

necessary to perform such an analysis using a variety of statistical packages, such as SPSS, R, 

etc. While the explanation of the phases of performing such analysis in different particular 

contexts has also been mentioned on many websites, as highlighted in the works of (Greenhouse 

J. B., Bromber, J. A., and Fromm D. A. 1995) as well as the writings of (Wuensch D. 2009). 

2.4.1 Logit transformation 

We consider a population P subdivided into two groups of individuals 𝐺1,  and 𝐺2 identifiable 

by an assortment of quantitative or qualitative explanatory variables 𝑋1, 𝑋2, …𝑋𝑝 and let Y be a 

dichotomous qualitative variable to be predicted (explained variable), worth (1) if the individual 

belongs to the group 𝐺1, and (0) if he/she comes from the group 𝐺2. In this context, we wish to 

explain the binary variable Y from the variables 𝑋1, 𝑋2, …𝑋𝑝. 

We have a sample of n independent observations of 𝑦𝑖, with i = 1, 2, ..., n. 𝑦𝑖 denotes a dependent 

random variable presented as a column vector such that, 𝑦𝑖 = (𝑦1, 𝑦2, … 𝑦𝑛) expressing the value 

of a qualitative variable known as a dichotomous outcome response, which means that the 

outcome variable 𝑦𝑖 can take on two values 0 or 1, evoking respectively the absence or the 

presence of the studied characteristic. We also consider a set of p explanatory variables denoted 

by the design matrix (X) = (𝑋1, 𝑋2, …𝑋𝑝) grouping the column vectors of the independent 

variables, of size (n × p) and rank (p), where (𝑥𝑖 ) is the row vector of these explanatory variables 

associated with the observation (i) such that, i = 1, 2, …, n, and the column vector (β) of 
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dimension p of the unknown parameters of the model, i.e. the unknown regression coefficients 

associated with the column vectors of the matrix (X). We consider in this paper that 𝑦𝑖 (response 

variable) is a realization of a random variable 𝑦𝑖 that can take the values 1 in the case that 

corresponds to the probability of tourism companies succeeding in overcoming the health crisis 

or 0 in the case of the probability of failing to overcome this crisis with probabilities of (π) and 

(1-π) respectively. 

The distribution of the response variable 𝑦𝑖  is called Bernoulli distribution with parameter (π). 

And we can write 𝑦𝑖 ∼ B(1, π). Let the conditional probability that the outcome is absent be 

expressed by P(𝑦𝑖  = 0|X) = 1 − π and present, denoted P(𝑦𝑖  = 1|X) = π, where X is the matrix 

of explanatory variables with p column vectors. The modeling of response variables that have 

only two possible outcomes, which are the "presence" and "absence" of the event under study, 

is usually done by logistic regression (Agresti, 1996), which belongs to the large class of 

generalized linear models introduced by (John Nelder and Robert Wedderburn 1972). The Logit 

of the logistic regression model is given by the equation:  

 

Logit(π) = ln(
π

1 − π
) =∑ 𝛽𝑘

𝑝
𝑘=0 𝑥𝑖𝑘, with 𝑖 = 1, . . . , 𝑛  (1) 

 

By the Logit transformation, we obtain from equation (1) the equation (2): 

 

(
π

1 − π
) = exp(∑ 𝛽𝑘

𝑝
𝑘=0 𝑥𝑖𝑘 ) (2) 

 

We evaluate equation (2) to obtain π et 1 − π as: 

 

π = exp(∑ 𝛽𝑘
𝑝
𝑘= 𝑥𝑖𝑘, ) - π exp(∑ 𝛽𝑘

𝑝
𝑘=0 𝑥𝑖𝑘 ) (3) 

 

π + π exp(∑ 𝛽𝑘
𝑝
𝑘=0 𝑥𝑖𝑘, ) = exp(∑ 𝛽𝑘

𝑝
𝑘=0 𝑥𝑖𝑘  ) (4) 

 

π (1 + exp (∑ 𝛽𝑘
𝑝
𝑘=0 𝑥𝑖𝑘)) = exp(∑ 𝛽𝑘

𝑝
𝑘=0 𝑥𝑖𝑘  ) (5) 

 

π = (
exp(∑ 𝛽𝑘

𝑝
𝑘=0 𝑥𝑖𝑘 )

1+exp (∑ 𝛽𝑘
𝑝
𝑘=0 𝑥𝑖𝑘)

) (6) 
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π = (
1

1+exp (−∑ 𝛽𝑘
𝑝
𝑘=0 𝑥𝑖𝑘)

) (7) 

 

In the same way, we obtain (1 − π):  

1 - π = 1 - (
1

1+exp (−∑ 𝛽𝑘
𝑝
𝑘=0 𝑥𝑖𝑘)

) 

 

1 - π =(
1

1+exp (∑ 𝛽𝑘
𝑝
𝑘=0 𝑥𝑖𝑘)

) 

 

1 – π = 
exp(−∑ 𝛽𝑘

𝑝
𝑘=0 𝑥𝑖𝑘 )

1+exp (−∑ 𝛽𝑘
𝑝
𝑘=0 𝑥𝑖𝑘)

   (8) 

 

 

2.4.2 Estimation of the β parameters of the nonlinear equations of the Bernoulli 

distribution using the maximum likelihood estimator (MLE).  

If 𝑦𝑖  takes strictly two values 0 or 1, the expression for π given in equation (7) provides the 

conditional probability that 𝑦𝑖  is equal to 1 given X, and will be reported as P(𝑦𝑖  = 0|X). And 

the quantity 1-π gives the conditional probability that 𝑦𝑖  is equal to 0 given X, and this will be 

reported as P(𝑦𝑖 = 0|X). Thus, for 𝑦𝑖 =1, the contribution to the likelihood function is π, but when 

𝑦𝑖 =0, the contribution to this function is 1 − π. This contribution to the likelihood function will 

be expressed as follows: 

𝜋𝑦𝑖  (1 − 𝜋)1−𝑦𝑖   

 

At this stage, we will estimate the P+1 unknown parameters β, using the maximum likelihood 

estimator (MLE) as follows:  

L (𝑦1, 𝑦2,… 𝑦𝑛, 𝜋) = ∏ 𝜋𝑦𝑖  (1 − 𝜋)1−𝑦𝑖  𝑛
𝑖=1  

 

Maximum likelihood is one of the most widely used estimation procedures for determining the 

values of the unknown β parameters that maximize the probability of obtaining an observed data 

set. In other words, the maximum likelihood function explains the probability of the observed 

data based on unknown regression parameters β. This method was developed by the British 
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statistician Ronald Aylmer Fisher between (1912 - 1922) as it was assigned in John Aldrich’s 

book "R. A. Fisher and the making of maximum likelihood 1912-1922 " published in (1997). 

This method aims to find estimates of the p explanatory variables to maximize the probability 

of observation of the response variable Y.  

L (𝑦1, 𝑦2,… 𝑦𝑛, 𝜋) = ∏ 𝜋𝑦𝑖  (1 − 𝜋)1−𝑦𝑖  𝑛
𝑖=1  

 

= ∏ (
π

1 – π
) 𝑦𝑖  (1 − 𝜋) 𝑛

𝑖=1  

Substituting equation (2) for the first term and equation (8) for the second term, we obtain:  

L (𝑦1, 𝑦2,… 𝑦𝑛, 𝛽1, 𝛽2, … 𝛽𝑝,  )  = ∏ (exp(∑ 𝛽𝑘
𝑝
𝑘=0 𝑥𝑖𝑘 , )) 

𝑦𝑖  (1 −
exp(∑ 𝛽𝑘

𝑝
𝑘=0 𝑥𝑖𝑘 )

1+exp(∑ 𝛽𝑘
𝑝
𝑘=0 𝑥𝑖𝑘)

)
 

𝑛
𝑖=1  

So, 

 

L (𝑦1, 𝑦2,… 𝑦𝑛, 𝛽1, 𝛽2, … 𝛽𝑝)  = ∏ (exp(𝑦𝑖 ∑ 𝛽𝑘
𝑝
𝑘=0 𝑥𝑖𝑘 , )) 

 (1 + exp(∑ 𝛽𝑘
𝑝
𝑘=0 𝑥𝑖𝑘, )) 

−1 
 

𝑛
𝑖=1  

For simplicity, we incorporate the neperian logarithm into the above equation. Since the 

logarithm is a monotonic function, any maximum in the likelihood function will also be a 

maximum in the log-likelihood function and vice versa. Thus, considering the natural logarithm 

of this equation, we obtain the log-likelihood function ℓ expressed as follows:  

 

ln (L (𝑦1, 𝑦2, … 𝑦𝑛, 𝛽1, 𝛽2, … 𝛽𝑝)) = 

ln (∏ (exp(yi ∑ βk
p
k=0 xik)) 

 (+exp(∑ βk
p
k=0 xik)) 

−1 
 

n
i=1 ) 

 

ℓ (𝑦1, 𝑦2, … 𝑦𝑛, 𝛽1, 𝛽2, … 𝛽𝑝) = ∑ 𝑦𝑖 
𝑛
𝑖=1 (∑ 𝛽𝑘

𝑝
𝑘=0 𝑥𝑖𝑘) – ln (1 + exp(∑ 𝛽𝑘

𝑝
𝑘=0 𝑥𝑖𝑘)) 

 

Deriving the last natural logarithm equation of the likelihood function above, we should write:  

𝜕ℓ(𝛽)

𝜕𝛽𝑘
 = ∑ 𝑦𝑖 

𝑛
𝑖=1 𝑥𝑖𝑘 – 

1

1+exp(∑ 𝛽𝑘
𝑝
𝑘=0 𝑥𝑖𝑘)

   ×  
𝜕

𝜕𝛽𝑘
 (1 + exp(∑ 𝛽𝑘

𝑝
𝑘=0 𝑥𝑖𝑘)) (9) 

 

𝜕ℓ(𝛽)

𝜕𝛽𝑘
 =  ∑ 𝑦𝑖 

𝑛
𝑖=1 𝑥𝑖𝑘 – 

1

1+exp(∑ 𝛽𝑘
𝑝
𝑘=0 𝑥𝑖𝑘)

  ×  exp(∑ 𝛽𝑘
𝑝
𝑘=0 𝑥𝑖𝑘) × 

𝜕

𝜕𝛽𝑘
 ∑ 𝛽𝑘
𝑝
𝑘=0 𝑥𝑖𝑘 (10) 
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𝜕ℓ(𝛽)

𝜕𝛽𝑘
 =  ∑ 𝑦𝑖 

𝑛
𝑖=1 𝑥𝑖𝑘 – 

𝑥𝑖𝑘

1+exp(∑ 𝛽𝑘
𝑝
𝑘=0 𝑥𝑖𝑘)

  ×  exp(∑ 𝛽𝑘
𝑝
𝑘=0 𝑥𝑖𝑘) (11) 

 

Knowing that:  

𝜕

𝜕𝛽𝑘
 ∑ 𝛽𝑘
𝑝
𝑘=0 𝑥𝑖𝑘 = 𝑥𝑖𝑘 

So,  

𝜕ℓ(𝛽)

𝜕𝛽𝑘
= ℓ𝛽𝑘

′  = ∑ 𝑦𝑖 
𝑛
𝑖=1 𝑥𝑖𝑘 −  𝜋. 𝑥𝑖𝑘  (12) 

Therefore, the estimation of the parameters �̂� = (𝛽0̂, 𝛽1̂,  ⋯, 𝛽�̂�)that maximize the log-likelihood 

function l can be determined by canceling each of the P +1 equations of ℓ’ (gradient of ℓ) as 

mentioned in equation (12), and verify that its Hessian matrix (second derivative) is negative 

definite, i.e. that each element of the diagonal of this matrix is less than zero (Gene H. Golub 

and Charles F. Van Loan 1996). The Hessian matrix consists of the second derivative of 

equation (12). The general form of the second partial derivative matrix (Hessian matrix) can be 

written as follows:  

𝜕2ℓ(𝛽)

𝜕𝛽𝑘 𝜕𝛽𝑘′
 =  

𝜕

𝜕𝛽𝑘′
  ∑ 𝑦𝑖 

𝑛
𝑖=1 𝑥𝑖𝑘 −  𝜋. 𝑥𝑖𝑘 (13) 

𝜕2ℓ(𝛽)

𝜕𝛽𝑘 𝜕𝛽𝑘′
 = 

𝜕

𝜕𝛽𝑘′
 (−  𝜋. 𝑥𝑖𝑘)   (14) 

𝜕2ℓ(𝛽)

𝜕𝛽𝑘 𝜕𝛽𝑘′
 = −  𝑥𝑖𝑘

𝜕

𝜕𝛽𝑘′
 (

exp(∑ 𝛽𝑘
𝑝
𝑘=0 𝑥𝑖𝑘 )

1+exp (∑ 𝛽𝑘
𝑝
𝑘=0

𝑥𝑖𝑘)
) 

ℓ𝛽𝑘𝛽′𝑘
′′ = −  𝑥𝑖𝑘 𝜋(1 − 𝜋) 𝑥𝑖𝑘  (15) 

To solve the (P +1) nonlinear β equations (12), we use the Newton-Raphson iterative 

optimization method, referring to the Hessian matrix. Using this method, the estimation of the 

β parameters starts with the first step of choosing a starting point 𝛽 0 or 𝛽 𝑜𝑙𝑑. The second step 

consists in mentioning the way the method works by posing: 𝛽 𝑘+1= 𝛽 𝑘 + 𝐴𝑘 × ∇ L(𝛽 𝑘), and 

finally stop when the condition 𝛽 𝑘+1 ≈ 𝛽 𝑘 or ∇ L𝛽 𝑘+1) ≈ ∇ L(𝛽 𝑘) is realized. The result of 
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this algorithm in matrix notation is:  

 

𝛽 𝑛𝑒𝑤 = 𝛽 𝑜𝑙𝑑 +  [− ℓ’’(𝛽 𝑜𝑙𝑑)] −1 ×  ℓ’(𝛽 𝑜𝑙𝑑) 

 

By putting �̂�  =  (𝛽0̂, 𝛽1̂, ⋯ ,  𝛽�̂�)
𝑡 we have: 

V(�̂�) = (− 
𝜕2

𝜕𝛽2 
 ln 𝐿 (𝛽, 𝑌))−1 ∥𝛽=�̂� = (XtWX)−1 

To simplify this equation above, we substitute the value of ℓ’(β), and ℓ’’(β) with another matrix 

form in the following way:  

𝛽 𝑛𝑒𝑤 = 𝛽 𝑜𝑙𝑑 + (XtWX)−1 × X
t
(Y −μ)   (16) 

 

𝛽 𝑛𝑒𝑤
 
= (X

t
W X)

−1
× X

t 
W (X𝛽 𝑜𝑙𝑑

 
+ W 

−1
(Y − μ)) 𝛽 𝑛𝑒𝑤

   
= (X

t
WX)

−1
X

t
WZ  (17) 

Where Z = (X𝛽 𝑜𝑙𝑑+W
−1

(Y−μ)) is a vector, and W is the vector of weights of the values of the 

diagonal of the inputs π�̂�(1 − π�̂�). We can also write:  

𝛽 𝑛𝑒𝑤 = 𝛽 𝑜𝑙𝑑 + (XtWX)−1 × X
t
(Y −μ) (18) 

With: 

X=

(

 

1 𝑥1,1 ⋯ 𝑥1,𝑝
1 𝑥2,1 ⋯ 𝑥2,𝑝
⋮ ⋮ ⋮ ⋮
1 𝑥𝑛,1 ⋯ 𝑥𝑛,𝑝)

  

 

�̂� = (

π1̂(1 – π1̂) 0 ⋯ 0

0 π2̂(1 – π2̂) ⋯ 0
⋮ ⋮ ⋮ ⋮
0 0 ⋯ π�̂�(1 – π�̂�)

) 

And: 

 

W= Diag π1̂(1 − π1̂), ⋯, π�̂�(1 − π�̂�) 
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2.4.3. Odds and Odds-ratios 

The odds ratio (OR) is a statistical procedure used to evaluate the association between two 

qualitative random variables. This procedure is often used in logistic regression to measure a 

relative effect. Knowing that we are in a case of a dichotomous response variable yi (binary 

logistic regression), the probability of having Y=1 knowing that X= x is noted πi. We determine 

the chance (odds) of having (Y =1|X = x) rather than having (Y = 0|X = x) by the ratio {}/{1-

}. The odds ratio can be expressed as follows:  

 

OR = 
𝜋(𝑥+1)/[1−𝜋(𝑥+1)]

𝜋(𝑥)/[1−𝜋(𝑥)]
 

 

3. RESULTS AND DISCUSSION  

In a context particularly marked by the worsening of the Covid-19 pandemic, the public 

authorities have legislated various measures and tax reforms to alleviate the tensions caused by 

the health crisis, to stimulate considerably the economic recovery and the productive fabric and 

specifically to attract the intention of agents operating in the informal sector to widen the base 

of the State’s tax revenues. Nevertheless, we will attempt through this study to predict the act 

of commitment of informal units, sensitized by the new tax reforms in terms of corporate tax 

(C.T), income tax (I.T), and value-added tax (VAT), using binary logistic regression. 

We consider a sample of n = 1000 informal production units taken from the Rabat-Salé-Kénitra 

area. The collection of responses is carried out through direct interviews, using a questionnaire 

composed of 20 closed questions. These answers declined 34.9% of the informal units from 

Rabat, 31.1% from Salé, and 34% from Kenitra. However, 3.6% of them carry out industrial 

activities, 50.3% construction activities, 28.7% commercial activities, and 17.4% service 

activities. However, 18% of these informal units have 1 year of seniority, 50.3% have between 

2 and 4 years, 28.7% have between 5 and 6 years, and 3% have more than 6 years of experience 

in the informal sector. 

The observations are fragmented into two groups of units G1 and G2 identifiable by a set of 

independent variables 𝑋1 , 𝑋2 , 𝑋3 . More precisely 𝑋1  represents the corporate tax reform, 𝑋2 is 

the income tax reform, and 𝑋3 .  Value-added tax reform. Let Y be the dichotomous qualitative 

variable to be predicted (response variable) expressing the decision of the informal units to 

engage with the general tax department. Y has the value (1) if the unit belongs to the 𝐺1  group 
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and (0) if it comes from the 𝐺2 . group. Noting also that 𝐺1 is dedicated to units choosing to 

commit to the tax administration, and 𝐺2  is dedicated to those deciding to remain uncommitted. 

Hence, we can write: 

▪ Y = 1: Engagement of informal units with the general directorate of taxes 

▪ Y = 0: No engagement of informal units with the general directorate of taxes 

▪ 𝐗𝟏 : Corporate tax reform (CT) 

▪ 𝐗𝟐 : Income tax reform (IT) 

▪ 𝐗𝟑 : Value-added tax reform (VAT) 

In this study, we have tried to measure the consequences of each of the explanatory variables 

on the engagement decision of informal units with their tax department. In other words, we will 

attempt to quantify the impact of tax reforms implemented by the public authorities in the areas 

of corporate income tax, income tax, and value-added tax on the decision of informal units to 

engage with the general tax directorate or to give up this option. 
 

Table Nº 4: Reliability test 

Cronbach’s 

Alpha 

Cronbach’s Alpha based on 

standardized elements 

Number of 

elements 

0.842 0,841 3 

Source: Author 

 

According to the reliability test, we note that the value of the coefficient α̂ = 0.842 largely 

exceeds the conventional minimum threshold of α = 0.70 (Nunnally J. C. 1978), (Darren and 

Mallery 2008) revealing that we obtain, for this assortment composed of three explanatory 

elements of the dependent variable, a satisfactory internal consistency. 

 

Table Nº 5 : 𝐑𝟐 ajusted 

-2 Log of 

Likelihood 

𝑹𝟐 of 

Cox and Snell 

𝑹𝟐 of 

Nagelkerke 

𝑹𝟐of 

the sum 

of squares 

𝑹𝟐(Adjusted) 

of the sum 

of squares 

396.009 0.839 0.811 0.848 0.846 

Source: Author 

 

The model summary provides the values of (-2LL), Cox and Snell, and Nagelkerke for the full 

model. The value of (-2LL) for this model reaches 396.009. This value was compared to that 
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of the base model using the chi-square test to reveal a highly significant decrease between the 

two (p = 0.000 < 0.05). This degradation justifies that the new model is significantly better 

fitted than the null model. Furthermore, the values tell us approximately how much variation in 

the outcome is explained by the model used. The Cox and Snell of the full model are 0.839 

indicating that there is an 83.9% probability that an economic unit operating in the informal 

sector will engage with the tax administration and formally declare its activity. Furthermore, 

the Nagelkerke, which is an adjusted version of the Cox-Snell and therefore closer to reality, is 

0.811. Thus, we can say that the explanatory variables contribute to explaining 81.1% of the 

variation in the probability that an informally operating firm can report its activity to the tax 

authorities after the implemented post-Covid-19 reforms, covering corporate taxes, income 

taxes, and value-added tax. On the other hand, a high value of the fitted or interpolated 

coefficient of determination refers to a better fit of the model to the data used. In our case the 

adjusted coefficient of determination (adjusted) = 0.846, i.e. 84.6% of the dispersion is 

explained by the binary logistic regression model. 

 

Table Nº 6: Interelements correlation matrix 

 Corporate tax 

reform (CT) 

Income tax 

reform (IT) 

Value-added tax 

reform (VAT) 

Corporate tax 

reform (CT) 
1 0,781 0,871 

Income tax reform 

(IT) 
0,781 1 0,895 

Value-added tax 

reform (VAT) 
0,871 0,895 1 

Source: Author 

The matrix of inter-element correlations is a matrix of statistical correlation coefficients 

calculated based on several variables taken two by two. It allows for quick detect the existing 

links between the introduced variables by foreseeing several studies and statistical explanations 

beforehand. However, the correlation matrix is symmetrical, and its diagonal is made up of 1’s 

since the correlation of a variable with itself is perfect. The correlation matrix based on our 

study’s answers shows that all the variables used are sufficiently correlated, with a correlation 



Revue Internationale des Sciences de Gestion  

ISSN: 2665-7473   

Volume 6 : Numéro 1  

   

Revue ISG                                                        www.revue-isg.com                                                   Page 1166 

coefficient varying between r = 0.781 and r = 0.895 noting that: 0.781 ≤ r ≤ 0.895, confirming 

moreover the result of Cronbach’s Alpha reliability coefficient. 

 

Table Nº 7: Chi-square test 

Source: Author 

 

The Chi-square test shows the relationship between the explanatory variables X1: Corporate tax 

reform (CT), X2: Income tax reform (IT), X3: Value − added tax reform (VAT) and the 

response variable “the engagement deed of the informal units with the Directorate General of 

Taxes” is highly significant, and an asymptotic significance (two-sided) of p = 0, 000 < 0.05. 

These results refer to rejecting the null hypothesis 𝐻0. In other words, the explanatory variables 

selected in this study have a significant relationship with the dependent variable, the 

engagement act of economic units operating in the informal sector with the tax administration. 

 

Table Nº 8: Cramer test 

  Value Approximate 

significance 

Cramer’s V 

𝑋1:  Corporate tax reform (CT) 0,416 0,000 

𝑋2 : Income tax reform (IT) 0,581 0,000 

𝑋3: Value-added tax reform (VAT) 0,526 0,000 

Source: Author 

 

The value of Cramer’s V varies in the interval [0,1]. In our case, we notice that the three 

explanatory variables "𝑋1:  Corporate tax reform (CT)", "𝑋2 : Income tax reform (IT)" and 

"𝑋3: Value-added tax reform (VAT)" have a strong link with the response variable, 

"engagement of informal units" (Louis M. Rea and Richard A. Parker (1992)). According to 

the work of Louis M. Rea and Richard A. Parker, if the value of Cramer’s V is between 0.4 and 

 Corporate tax 

reform (CT) 

Income tax 

reform (IT) 

Value-added tax 

reform (VAT) 

Chi-square value of pearson 
19.512 

ddl = 1 

15.376 

ddl = 1 

16.876 

ddl = 1 

Asymptotic significance 

(bilateral) 

0.000 <0.05 0.000 <0.05 0.000 <0.05 
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0.6 the association between the dependent variable and the independent variables is relatively 

strong. As mentioned in the table of the Cramer’s V test, the set of values is bounded between 

the values 0.4 and 0.6. 

Table Nº 9: Area under curve 

 

 

 

AUC Standard 

error 

Asymptotic 

Sig. 

Asymptotic 

confidence interval 

for 95% 

Inferior superior 

𝑋1:  Corporate tax reform (CT) 0.618 0.029 0.001 0.562 0.674 

𝑋2 : Income tax reform (IT) 0.640 0.028 0.007 0.601 0.676 

𝑋3: Value-added tax reform (VAT) 0.667 0.028 0.003 0.654 0.712 

Source: Author 

 

The AUC (area-under-curve) expresses the probability of placing a positive element in front of 

a negative element. However, this technique proposes an AUC = 0.5 as a baseline situation that 

our classifier needs to improve. At first glance, all results are highly significant with a p = 0.000 

≤ 0.05. On the other hand, the table also reports AUCs that exceed the baseline situation (AUC 

= 0.5), which means that the explanatory variables used in the model all significantly impact 

the response variable. However, it can be predicted that informal units are 61.8 % (IC5%= 

[0.562, 0.674]) more likely to engage with their tax authorities than to operate informally if 

they are exposed to the new Corporate tax reform (CT). Similarly, the new Income tax reform 

(IT) is likely to generate 64%. (IC5% = [0.601, 0.676]) chance of engagement. In addition, the 

Value-added tax reform (VAT) is capable of generating 66.7% engagement act (IC5% = [0.654, 

0712]). 

Table Nº 10: Table of variables in the equation 

 

 

 

̂ E. S Wald ddl Sig Exp(𝛃) 

Confidence interval for 

Exp (β) (95%) 

Inferior superior 

𝑿𝟏 1.615 0.460 11.98 1 0.001 5.030 3.015 7.552 

𝑿𝟐 1.871 0.617 9.212 1 0.002 6.497 4.941 9.753 

𝑿𝟑 1.558 0.571 7.341 1 0.007 4.751 2.542 6.642 

Source: Author 

This table provides the regression coefficients ̂, the Wald statistic for testing statistical 
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significance, the odds ratio exp (̂) for each predictor variable, and finally the confidence 

interval for each odds ratio (OR). However, it is easy to interpret the p-meanings, but the 

question that arises at this point is how to interpret the regression coefficients ̂. What does this 

coefficient correspond to, and how can it be interpreted? Nevertheless, the regression coefficient 

̂ can only explain the direction of fluctuation between the explanatory variable and the response 

variable. That is, a positive sign of the coefficient ̂ refers to a change in the same direction 

between the predictor variable and the dependent variable, whereas a negative sign refers to a 

change in two opposite directions of the two variables. Apart from the coefficient ̂ is not 

interpretable. However, the exponential of  ̂ "(exp (̂))" has a meaning that is easily interpreted 

by statisticians. The "exp (̂)" also called odds-ratio (OR), odds ratio, or also a close relative 

risk, designates a relationship to the response variable. 

Looking at the results, we find a highly significant effect of all predictor variables on the 

response variable "Act of engagement of informal units with the tax administration". However, 

the p (𝑋1:  Corporate tax reform (CT)) = 0.001 < 0.05, p (𝑋2 : Income tax reform (IT)) = 

0.002 < 0.05, and p (𝑋3: Value-added tax reform (VAT)) = 0.007 < 0.05. The column exp(̂) 

(Odds Ratio) tells us that the different explanatory variables each influence the variable to be 

predicted distinctly. In line with our case, we can claim that the Corporate tax reform (CT) 

can generate a fivefold increase in the chance (OR(X1) = 5.0 30, IC5% = [2.015, 12.552]) that 

informal units are likely to engage with the tax department. In the same manner, an Income tax 

reform (IT) is also six times more likely (OR(X2) = 6.497, IC5%= [1.941, 21.753]) that they 

will choose to engage than to operate outside of tax regulations. Also, a Value-added tax 

reform (VAT) is four times more likely (OR(X3) = 4.751, IC5%= [1.542, 14.642]) that they 

will fully comply with the tax authorities. We note that the new reforms and tax bases for 

corporate income tax, income tax, and value-added tax have contributed significantly to the 

engagement of informal economic units, draining additional tax revenues from the general state 

budget. 

4. CONCLUSION 

In a fearful context marked by the coronavirus epidemic, the Moroccan State has put in place 

several preventive measures to ensure economic agents’ sanitary, economic and social security. 

However, Morocco has mobilized various private and public actors to involve them in the 

process of the absorption of this health crisis. The measures implemented have included easing 
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various tax administration and tax litigation deadlines, as well as a reform marked by a 

downward tax trend. In addition, Morocco has used its tax system as an effective means to 

provide economic support to various sectors of the economy affected by the pandemic. These 

actions have not only contributed to the resilience of formally operating production units but 

also encouraged production units operating in the informal sector to engage with the tax 

authorities for the first time. In capturing the importance and benefit of this engagement 

decision by informal units on the state budget balance and gross domestic product, our study 

simply predicted and explained the act of engagement by the reforms implemented in terms of 

corporate income tax, income tax, and value-added tax during the covid-19 period. This study 

has shown that these new tax bases have had a positive impact on the engagement of informal 

units to register with their tax authorities. Nevertheless, the reform of the corporate income tax 

made them five times more likely to engage than to remain uncommitted. Also, the income tax 

reform contributed to six times more chances to engage than to operate outside the tax 

regulations. Also, value-added tax reform was four times more likely to engage than to operate 

in the informal sector. Using generalized linear models, and specifically binary logistic 

regression, we were able to model the binary response variable "engagement of informal units" 

and explain how effective the tax actions implemented were in attracting these units and 

converting them to taxpayers of the General Tax Directorate. 

Apart from this, classical linear models are predominant in the arsenal of statistical models used 

by the research and academic community. However, these models include common methods 

such as linear regression, analysis of variance, and analysis of covariance. These models are 

based on the assumption of a linear relationship between the expectation of the response 

variable and the explanatory variables. However, this condition of linearity cannot always be 

present between the explanatory variables and the variable to be explained. In these 

circumstances, generalized linear models (GLM) are used to analyze non-linear relationships, 

such as the binary logistic regression model, fish regression, probit regression, etc. These 

generalized linear models are likely to be used in the analysis of the response variable. These 

generalized linear models can transform a non-linear relationship between the dependent and 

independent variables into a linear relationship using an interpolated link function. This 

function can transform categorical responses to a continuous scale without limit. This article 

presents an application test by choosing one of the most important extensions of generalized 

linear models such as binary logistic regression. This application confers to the prediction of 
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the engagement activities of informal production units sensitized by the new tax reform 

implemented during the covid-19 health crisis. 
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