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Résumé  

Cette recherche explore l’optimisation de la prospection minière en République Démocratique 

du Congo, spécifiquement dans le territoire de Seke-Banza (Kongo-Central), une zone riche 

en bauxites et autres minéraux. L’objectif est d’évaluer l’apport de l’intégration de 

l’Intelligence Artificielle (IA), couplée aux Systèmes d’Information Géographique (SIG) et à 

la télédétection, pour une cartographie prédictive plus précise. La méthodologie repose sur la 

conception d’un pipeline modulaire intégrant le prétraitement de données géospatiales 

complexes (indices topographiques, lithologie, humidité, végétation) et quatre algorithmes 

d’apprentissage automatique : Random Forest, SVM, XGBoost et ANN. Le modèle XGBoost 

s’est révélé le plus performant (Accuracy = 92 %, Kappa = 0,7359, AUC = 0,85, PR-AUC = 

0,8166). L’indice d’humidité (NDMI) et la pente constituent les principaux prédicteurs. Une 

carte prédictive a été générée, permettant de planifier les campagnes de terrain en quatre 

vagues prioritaires. Cette approche démontre que l’IA appliquée aux géosciences permet de 

réduire les incertitudes et les coûts d’exploration. En perspective, l’intégration du Deep 

Learning et de données hyperspectrales pourrait encore affiner ces prédictions et contribuer à 

moderniser la gestion minière en République Démocratique du Congo.  

Mots clés : IA, SIG, Télédetection, Cartographie prédictive, Apprentissage automatique. 

Abstract  

This research explores the optimization of mineral prospecting in the Democratic Republic of 

Congo, specifically in the Seke-Banza territory (Kongo-Central), an area rich in bauxite and 

other minerals. The objective is to evaluate the contribution of integrating Artificial 

Intelligence (AI), coupled with Geographic Information Systems (GIS) and remote sensing, 

for more accurate predictive mapping. The methodology is based on the design of a modular 

pipeline integrating the preprocessing of complex geospatial data (topographic indices, 

lithology, moisture, vegetation) and four machine learning algorithms: Random Forest, SVM, 

XGBoost, and ANN. The XGBoost model proved to be the most effective (Accuracy = 92%, 

Kappa = 0.7359, AUC = 0.85, PR-AUC = 0.8166). The moisture index (NDMI) and slope are 

the main predictors. A predictive map was generated, enabling the planning of field 

campaigns in four priority waves. This approach demonstrates that AI applied to geosciences 

can reduce uncertainties and exploration costs. Looking ahead, the integration of deep 

learning and hyperspectral data could further refine these predictions and contribute to 

modernizing mining management in the Democratic Republic of Congo. 

Keywords : AI, GIS, Remote Sensing, Predictive Mapping, Machine Learning.  



Revue Internationale des Sciences de Gestion  

ISSN: 2665-7473   

Volume 9 : Numéro 1  

  

Revue ISG                                                        www.revue-isg.com                                                  Page 1113 

Introduction 

Les ressources minérales constituent la pierre angulaire du développement socio-économique 

moderne et revêtent une importance capitale pour la sécurité stratégique nationale. Face à 

l’intensification de l’exploitation minière et à la mise en place progressive de barrières 

commerciales internationales, la prospection, la prévision et l’exploration approfondie des 

minéraux stratégiques et piliers sont devenues une priorité pour de nombreux pays et 

organismes gouvernementaux. 

La cartographie prédictive des ressources minérales, en tant que méthode technique 

permettant une utilisation exhaustive des informations géologiques, géophysiques, 

géochimiques et d’autres sources de données, permet d’identifier efficacement les zones à fort 

potentiel minéral, orientant ainsi les activités d’exploration, améliorant leur efficacité et 

réduisant les coûts (Sun et al., 2024). Ces dernières années, deux grands courants 

méthodologiques structurent les avancées de la cartographie prédictive minière : 

(i) le Machine Learning, fondé sur des algorithmes tels que Random Forest, SVM ou 

XGBoost, qui excellent dans la classification supervisée et la détection de relations complexes 

entre variables ; et (ii) le Deep Learning, basé sur des réseaux neuronaux profonds capables 

d’extraire automatiquement des caractéristiques hiérarchiques, notamment à partir d’images 

satellitaires. Toutefois, bien que la littérature mette en avant le potentiel du Deep Learning, 

son utilisation effective requiert des architectures profondes (CNN, U-Net, autoencodeurs), ce 

qui dépasse le cadre des modèles neuronaux simples à une ou deux couches. Dans cette étude, 

l’approche mobilisée relève donc du Machine Learning et d’un modèle neuronal simple. 

(Kongolo, 2024) rappelle l’importance stratégique du secteur extractif pour le développement 

économique congolais et la nécessité d’outiller l’État et les territoires afin d’optimiser la 

gouvernance des ressources naturelles. Ces analyses illustrent l’urgence d’intégrer des 

approches technologiques avancées permettant d’améliorer la connaissance géologique du 

pays et de soutenir une exploitation rationnelle et équitable. 

La RDC, bien que largement reconnue pour la richesse minérale de ses provinces de l’Est et 

du Sud, laisse les provinces de l’Ouest dont le territoire de Seke-Banza relativement sous-

documentées. Pourtant, ce territoire est réputé pour ses gisements de bauxite, matière 

essentielle à la fabrication de l’aluminium, et abriterait, selon les autorités locales, plus de 

deux millions de tonnes de réserves non exploitées, ainsi que d’autres minéraux tels que l’or, 
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le diamant, le pétrole et diverses ressources encore non mises en valeur depuis l’époque 

coloniale. 

La question suivante constitue l’axe central de notre réflexion : 

Quelle contribution l’intelligence artificielle couplée aux systèmes d’information 

géographique offre-t-elle à l’amélioration de la cartographie prédictive minière dans le 

territoire de Seke-Banza ? 

L’objectif de cet article est d’appliquer des algorithmes d’apprentissage automatique (ML) et 

un réseau de neurones artificiel, couplés aux systèmes d’information géographique et à la 

télédétection, afin de prédire les zones à fort potentiel minier dans le territoire de Seke-Banza. 

Pour y parvenir, trois objectifs spécifiques se dégagent : 

• Collecter et prétraiter les données géospatiales et géologiques pertinentes pour la zone 

d’étude, et calculer les indicateurs géochimiques issus des images satellitaires ; 

• Entraîner des modèles d’apprentissage automatique capables d’estimer la distribution 

géostatistique des minéraux et de produire une carte prédictive illustrant les zones à 

forte probabilité ; 

• Analyser la performance des algorithmes, en s’appuyant sur des données géospatiales, 

des images satellites et sur les échanges directs avec les agents du ministère des Mines 

et des géologues. 

Le choix de cette étude de cas répond également à une préoccupation sociale et économique : 

attirer l’attention des décideurs sur le potentiel inexploité du territoire de Seke-Banza et 

contribuer à son intégration parmi les zones prioritaires d’exploitation, afin de stimuler 

l’économie locale et de réduire la pauvreté persistante. Sur la base de cette méthodologie, 

l’article se structure en trois parties complémentaires : (i) un état de l’art présentant les 

notions essentielles liées à l’intelligence artificielle, aux SIG, à la télédétection et à la 

cartographie prédictive ; (ii) la présentation des sources de données ainsi que des algorithmes 

de Machine Learning et de Deep Learning utilisés ; (iii) l’analyse des données et la discussion 

des résultats. 

 

1. Etat de l’art 

L’intégration de l’IA, des SIG et de la télédétection est particulièrement pertinente pour 

l’exploration minière, car elle permet de traiter et d’analyser des volumes massifs de données 

géospatiales et spectrales(Shirmard et al., 2021). Les données géologiques et satellitaires 

contiennent des informations complexes et multidimensionnelles, souvent invisibles à l’œil 
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humain, mais exploitables grâce à des algorithmes avancés(Sun et al., 2024). Les SIG offrent 

un cadre pour la gestion et la visualisation des données géologiques, tandis que la 

télédétection fournit des informations précieuses sur la composition et la structure des 

terrains(Katiyar et al., 2024). L’IA, quant à elle, apporte des capacités d’apprentissage 

automatique et de reconnaissance de patterns, améliorant la précision et la rapidité des 

analyses(Wang, 2025). Elle agit comme un outil de fouille de données(data mining), capable 

d’identifier des motifs cachés, comparables à des pierres précieuses qui révèlent des zones à 

forte probabilité de présence minérale.  Cette synergie technologique répond aux défis actuels 

de l’exploration minière, notamment la réduction des coûts, l’optimisation des campagnes de 

prospection et la minimisation des impacts environnementaux(Shirmard et al., 2021). 

 

1.1. Etat de l’Art sur le Domaine d’application 

1.1.1. Intelligence Artificielle (IA) appliquée à la géologie 

(Zuo & Carranza, 2023); (Pierdicca & Paolanti, 2022) L’IA regroupe des techniques 

permettant aux systèmes informatiques d’apprendre à partir des données et d’exécuter des 

tâches complexes sans programmation explicite. Dans la géologie, elle est devenue un outil 

incontournable pour analyser des volumes massifs de données géospatiales et spectrales, 

souvent invisibles à l’œil humain (Chen et al., 2020); (Pierdicca & Paolanti, 2022). Elle 

permet d’identifier des zones à fort potentiel minéral grâce à des modèles prédictifs basés sur 

des corrélations multidimensionnelles(Zuo & Carranza, 2023). Les approches les plus 

utilisées sont le Machine Learning (ML) et le Deep Learning (DL), Machine Learning : 

algorithmes tels que Random Forest, Support Vector Machine (SVM) et XGBoost sont 

largement appliqués pour la classification et la prédiction des zones minéralisées(Zuo & 

Carranza, 2023) et Deep Learning :  réseaux de neurones profonds comme les Convolutional 

Neural Networks (CNN) pour l’analyse d’images satellitaires, les Réseaux de Neurones 

Récurrents (RNN) et LSTM pour les données temporelles , ainsi que les Réseaux de Neurones 

Artificiels (ANN), qui sont des architectures plus simples mais efficaces pour modéliser des 

relations non linéaires complexes dans des données  multidimensionnelles(Farahbakhsh et al., 

2025). 

 

1.1.2.  L’intégration des Systèmes d’Information Géographique (SIG) avec l’IA 

Les Systèmes d’Information Géographique (SIG) sont des plateformes informatiques conçues 

pour la collecte, le stockage, l’analyse et la visualisation de données géospatiales. Ils 

constituent un pilier essentiel de l’exploration minière, en permettant l’intégration 
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harmonieuse des différentes sources d’information géoscientifique(Tagwai et al., 2024) ; 

(Gregorio, 2025). Les SIG fournissent un prétraitement des données géospatiales, converties 

en formats exploitables par des algorithmes de Machine Learning et Deep Learning. Les 

résultats prédictifs (cartes de probabilité issues des modèles IA) sont réinjectés dans les SIG 

pour permettre des analyses spatiales avancées, des visualisations thématiques et une 

meilleure prise de décision(Thiruchittampalam et al., 2025). 

 

1.1.3. La télédetection 

(Kalinowski & Oliver, 2004 ; Ahmadi & Pekkan, 2021) La télédétection est une technique non 

invasive permettant la collecte d’informations multi-échelles sur la surface terrestre grâce à 

des capteurs embarqués sur satellites, drones ou avions. Elle constitue l’un des pilier de 

l’exploration minière, car elle fournit des données continues et synoptiques essentielles à 

l’analyse géologique(Smith, 2025). Les applications suivantes sont utilisé pour l’exploration 

minière : Cartographie lithologique et détection d’altérations minérales : Les images 

multispectrales (Landsat, Sentinel 2) et hyperspectrales (ASTER, PRISMA) permettent de 

distinguer les matériaux selon leurs signatures spectrales, facilitant la reconnaissance des 

zones souffrant d’altération hydrothermale(Bahrami et al., 2024). Identification des structures 

géologiques : L’extraction de lineaments, failles et fractures s’appuie sur les variations 

spectrales et texturales des images satellitaires (Ahmadi & Pekkan, 2021). Indices spectraux 

ciblés : Utilisation d’indices pour argiles, oxydes de fer, carbonates (via ASTER) ou 

argiles/oxydes à partir de Sentinel 2/Landsat, indicateurs d’altération minérale(Kalinowski & 

Oliver, 2004). Surveillance environnementale : Utilisation des données SAR (InSAR) et 

multispectrales pour évaluer la morphologie du site, les zones à risque comme les déchets 

miniers et l’acidification acide.(TREALTAMIRA, 2025). Les données issues de la 

télédétection sont prétraitées dans un SIG, puis converties en jeux de données géoréférencés 

pour être analysées par des algorithmes de machine learning (CNN, RF, SVM, ANN). Les 

résultats (cartes d’altération, de probabilité, de risques) sont ensuite intégrés dans le SIG pour 

le ciblage des zones à explorer (Shirmard et al., 2021).  

 

1.1.4. Synergie Intelligence Artificiel, Systèmes d’Informations Géographiques et la 

Télédetection 

La synergie entre l’Intelligence Artificielle, les Systèmes d’Information Géographique et la 

télédétection représente aujourd’hui l’une des approches les plus avancées et les plus 
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performantes pour la cartographie prédictive des ressources minières. Cette intégration repose 

sur la complémentarité fonctionnelle de ces trois technologies, chacune apportant des 

capacités spécifiques au processus d’analyse et de prise de décision. La télédétection fournit 

les données de base, sous forme d’images satellitaires multispectrales, hyperspectrales ou 

radar, permettant d’extraire des variables géologiques, géomorphologiques et spectrales 

pertinentes. Les SIG assurent ensuite le stockage, l’organisation et l’analyse spatiale de ces 

données, en facilitant leur intégration avec d’autres sources d’information telles que les 

données géologiques, géophysiques, géochimiques et issues des forages(Gregorio, 2025). 

L’Intelligence Artificielle intervient comme un moteur analytique avancé, capable de traiter 

ces données hétérogènes et de grande dimension afin d’identifier des relations complexes et 

non linéaires entre les variables. Les algorithmes de Machine Learning et de Deep Learning 

sont utilisés pour générer des modèles prédictifs produisant des cartes de probabilité de 

minéralisation(Xuance Wang, 2025). Cette approche intégrée permet d’améliorer 

significativement la précision des modèles de cartographie prédictive, tout en réduisant la 

subjectivité liée aux méthodes d’interprétation traditionnelles. Elle favorise également une 

exploration minière plus durable, en optimisant les campagnes de prospection et en limitant 

les impacts environnementaux grâce à un meilleur ciblage des zones d’intervention. 

 

1.1.5. Synthèse critique comparative des travaux existants 

Bien que la littérature récente mette en évidence une intégration efficace de l’IA, des SIG et 

de la télédétection pour la cartographie prédictive minière, plusieurs limites majeures 

persistent. La plupart des études restent focalisées sur un seul type de données (souvent 

satellitaires) ou sur un seul algorithme, ce qui réduit la généralisation des modèles (Shirmard 

et al., 2021) ; (Sun et al., 2024). De plus, les comparaisons entre techniques d’apprentissage 

automatique sont souvent limitées ou peu standardisées, rendant difficile l’évaluation 

rigoureuse des performances des modèles entre différents environnements géologiques (Zuo 

& Carranza, 2023). Les approches classiques reposant sur Random Forest, SVM et CNN 

montrent de bonnes performances, mais souffrent souvent d’un manque d’explicabilité, 

particulièrement pour les modèles profonds (Farahbakhsh et al., 2025). Par ailleurs, plusieurs 

travaux ne parviennent pas à intégrer de manière harmonieuse l’ensemble des sources 

d’information (télédétection, géologie, géophysique, géochimie), malgré le rôle reconnu des 

SIG comme plateforme intégratrice (Tagwai et al., 2024). Enfin, peu d’études proposent des 
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protocoles reproductibles et normalisés permettant de comparer les performances selon 

différents types d’algorithmes ou de données. 

Tableau N°1 : synthèses comparatives des approches existantes 

Etude 
Données 

utilisées 
Algorithmes Forces Limites 

(Shirmard et al., 2021) Images 

satellitaires + 

données 

géologiques 

RF et SVM Bonne 

détection des 

altérations 

Peu 

d’intégration 

multimodale 

(Cheng, 2007) Hyperspectral CNN Précision 

élevée 

Dépendance à la 

qualité spectrale 

(Zuo & Carranza, 2023) Données 

géospatiales 

diverses 

RF, 

XGBOOT 

Modèles 

Robustes 

Comparaison 

limitée des 

modèles 

(Bahrami et al., 2024) ASTER, 

Sentinel‑2 

Indices + ML Bon ciblage 

hydrothermal 

Validation 

géographique 

limitée 

(Farahbakhsh et al., 

2025) 

Multispectral + 

terrain 

ANN, CNN Précision 

élevée 

Explicabilité 

faible 

(Tagwai et al., 2024) SIG + géologie ML classique Bonne 

intégration SIG 

Pas de 

comparaison de 

modèles 

Source : Auteur 

1.1.6. Apport spécifique de cette étude 

Cette recherche apporte une contribution originale en proposant : (i) Une comparaison 

systématique de plusieurs algorithmes (RF, SVM, XGBoost, ANN) sur un même jeu de 

données. (ii) Une intégration complète des données provenant de la télédétection et du SIG. 

(iii) Un protocole reproductible pour la cartographie prédictive des ressources minières. Une 

analyse critique des forces et limites des modèles utilisés. Une approche opérationnelle 

fournissant des cartes de probabilité utiles pour la prospection minière. Elle s’inscrit donc 

dans la continuité des travaux existants tout en comblant leurs limites méthodologiques. 

 

2. Source des données 

Le territoire de Seke-Banza est un territoire de la province du Kongo Central en République 

Démocratique du Congo (RDC). Il est bordé à l'est par le territoire de Luozi, à l'ouest par les 

territoires de Lukula et de Moanda, au nord par le territoire de Tshela et au sud par la ville de 
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Matadi. Les sols sont généralement argileux. Quant au sous-sol, il contient une diversité de 

minerais : l’or, le diamant, la bauxite, la cassitérite, le quartz et autres mais inexploités 

industriellement. C'est dans ce territoire que se situent les barrages hydroélectriques d'Inga, 

parmi les plus importants d'Afrique. 

Figure N°1 : Carte générale de la zone d’étude Seke-banza 

 

 

 

 

 

 

 

 

 
 

Source : Auteur. 

2.1. Données et Méthodes 

2.1.1. Données 

La collecte des données constitue une étape essentielle pour garantir la qualité et la pertinence 

des informations utilisées dans la modélisation. Elle s’effectue selon les étapes suivantes : 

 

2.1.1.1. Acquisition des images satellites 

(Benade & Ajayi, 2025) Les données d’entrée ont été extraites du modèle Numérique de 

Terrain (MNT), qui a fourni les cartes suivantes : Elévation, Pente, Indice d’Humidité 

Topographique , Indice de Position Topographique, Indice de Rugosité de Terrain, Aspect, 

Général courbures, Plan courbures et Profil courbues. Le MNT a été extrait avec une 

résolution de 30 mètres au format GeoTIFF, c'est-à-dire qu'il est géoréférencé dans le système 

géographique WGS1984, afin de le projeter ensuite selon le système de référence du projet 

EPSG:32733 - WGS 84 / UTM zone 33S et de le découper sur la zone d'étude selon les 

dimensions suivantes : largeur : 2076 et hauteur : 3441, avec une taille de pixel de 13,65.  La 

carte géologique, qui inclut les unités lithologiques ainsi que les structures tectoniques, a 

ensuite été utilisé pour calculer la distance aux failles. Il faut ajouter les indices dérivés de la 

télédetection : incluant des indicateurs spectraux et morphologiques tels que : NDVI(L'indice 

de végétation par différence normalisée), NDWI(L'indice de différence normalisée de l'eau), 
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NDMI(Indice d'Humidité par Différence Normalisée), et NDBI(L'Indice de Bâti par 

Différence Normalisée). La carte minéralogique réalisée repose sur des indices spectraux 

sensibles aux oxydes de fer et ferreux, une méthode couramment utilisée en absence de 

données de prospection. Des études comme (Wejden Bouzidi et al., 2022; Benade & Ajayi, 

2025) montrent que la télédétection permet d’identifier fiablement des anomalies minérales. 

En RDC, où la prospection minière est fortement réglementée et coûteuse, l’imagerie 

satellitaire constitue une étape préliminaire efficace pour cibler les zones prioritaires. Les 

travaux de (Gregorio, 2025 Chakraborty et al., 2024 et Zoulikha Mehalli, 2024) confirment 

que les indices spectraux offrent une première évaluation fiable, même sans données terrain, 

bien que la validation finale doive être réalisée sur le terrain. Le (US Geological Survey, n.d.) 

souligne également l’intérêt de la télédétection pour évaluer les zones minéralisées sans 

intervention immédiate. Ainsi, pour une zone comme Seke Banza, cette approche constitue 

une méthode préliminaire scientifiquement justifiée pour orienter la prospection réelle. 

Figure N°2 : les cartes géospatiales  

Source : Auteur 
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Figure N°3 : les cartes géospatiales(2) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 

Source : Auteur 

2.1.1.2.  Pré-processing  des Données 

Après la production des cartes thématiques dans l’environnement QGIS, les cartes ont été 

converties en format tabulaire (CSV) soit 7.450.000 données avec 15 variables indépendantes 

et 1 variable dépendante. Dans un premier temps, les données ont fait l’objet d’un contrôle de 

qualité visant à identifier les valeurs manquantes, aberrantes ou incohérentes. La présence de 

valeurs manquantes est principalement liée aux données de type NoData, correspondant aux 

zones situées en dehors de la zone d’étude. Nous n’avons pas recourir à l’approche 

d’imputation car cela biaiserai nos analyses, les données manquantes, dans notre étude 

signifiées l’absences des données dans cette zone, ces données manquantes sont liées à 

l’emprise géographique ce qui rend l’imputation statistique invalide par rapport à une 

suppression simple. Dans ce contexte, nous avons supprimé les données manquantes pour 

considérer uniquement les données nettoyées soit 4.006.480 données. Compte tenu du volume 

très important des données. Nous avons utilisé un échantillon afin de rendre le processus 

d’entraînement des modèles compatible avec les capacités de calcul disponibles, notamment 
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dans l’environnement Google Colab. Un échantillon correspondant à 10% de l’ensemble des 

données brutes a été extrait de manière contrôlée(baeldung, 2025). Cet échantillon représente 

environ 400 648 données, ce qui constitue un compromis pertinent entre représentativité 

spatiale, diversité des variables et temps de calcul raisonnable. L’échantillon ainsi constitué a 

été utilisé pour l’entraînement et la validation des modèles de Machine Learning, tandis que 

l’ensemble des données brutes a été conservé pour l’application des modèles entraînés et la 

génération des cartes prédictives à l’échelle de la zone d’étude. Il sied de noter que nous 

avons utilisé l’échantillonnage par  stratification, pour garantir que la répartition des 

échantillons entre les différentes classes ou catégories reste représentative de la population. 

Poursuit l’avantage la réduction des biais et améliore les performances du modèle sur 

l’ensemble de données déséquilibrés par rapport à l’échantillonnage aléatoire simple peut, par 

pur hasard, oublier des catégories rares dans un dataset de cette taille.(geeksforgeeks, 2025). 

Les variables numériques ont fait l’objet d’une transformation afin de garantir une échelle 

comparable entre les différentes caractéristiques, la standardisation a été appliquée 

uniquement aux modèles Support Vector Machine (SVM) et Artificial Neural Network 

(ANN), ces algorithmes étant sensibles à l’échelle des données. Les modèles basés sur les 

arbres de décision, tels que Random Forest et XGBoost, n’ont pas nécessité de mise à 

l’échelle préalable.  

 

2.2.2. Méthodes 

- Random Forest (RF) : Algorithme d’ensemble basé sur une multitude d’arbres de 

décision, robuste face aux données bruitées et capable de gérer des variables 

hétérogènes. Il est robuste aux données bruitées et aux corrélations entre variables, ce 

qui est fréquent dans les données géospatiales. 

- Support Vector Machine (SVM) : Modèle cherchant à définir l’hyperplan optimal 

pour séparer les classes de données dans un espace multidimensionnel. Il est reconnu 

pour sa rapidité et sa capacité à gérer des datasets volumineux, tout en offrant des 

mécanismes de régularisation pour éviter le surapprentissage. 

- XGBoost (Extreme Gradient Boosting) : Algorithme basé sur le boosting d’arbres, 

optimisé pour la performance et la rapidité. Il est adapté aux problèmes de 

classification non linéaire et performant pour des données multidimensionnelles. 

- Artificial Neural Network (ANN) : Réseau de neurones artificiels capable de 

capturer des relations non linéaires complexes entre les variables. Il est choisi pour sa 
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capacité à modéliser des relations complexes et non linéaires, particulièrement utiles 

pour les indices dérivés de la télédétection. 

- Model Evaluation Methods : L'évaluation ne repose pas sur un seul indicateur, mais 

sur un ensemble de métriques complémentaires permettant d'analyser la précision 

spatiale et la fiabilité statistique. 

Tableau N°2 : les métriques pour l’évaluation de nos modèles 

Métrique Formule Définition 

Precision 
TP

(TP +  FP)
 

Proportion des prédictions positives qui sont 

correctes. 

Recall (TPR) 
TP

(TP +  FN)
 

Proportion des positifs réels correctement détectés. 

F1-score 2 ∗  
(𝑝𝑟é𝑐𝑖𝑠𝑖𝑜𝑛∗𝑟𝑒𝑐𝑎𝑙𝑙)

(𝑝𝑟é𝑐𝑖𝑠𝑖𝑜𝑛+𝑟𝑒𝑐𝑎𝑙𝑙)
 

Moyenne harmonique de la précision et du rappel. 

Accuracy 
(TP +  TN)

(TP +  TN +  FP +  FN)
 

Proportion totale de prédictions correctes. 

Kappa 

(Cohen) 

(𝑝𝑜 − 𝑝𝑒)

(1 − 𝑝𝑒)
 

Accord entre prédictions et vérité, corrigé du hasard. 

𝑝𝑜= accuracy; 𝑝𝑒  basé sur les marges. 

Source : Auteur 
 

3. Analyse des données et Discussion 

Nous présentons la répartition de la carte minéralogique du territoire de Seke-banza,  

 

Figure N°4 : Répartition des pixels selon la carte minéralogique 
  
 

 

 

 
 

 

 

 
 

 

 

 

 

 

 

 

 

Source : Auteur. 
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Concernant la corrélation entre les variables la figure 18, montre que les variables présentant 

une forte corrélation positive et négative entre les variables, les couples suivants : (Profil 

curvature – NDBI : +0,98) ; (TWI – NDWI : +0,78) ; (Plan_curvature – Pente : -0,76), (TPI – 

NDMI : -0,74), (TWI – TRI : 0,77), (Pente – TPI : 0,71), (NDWI-TRI : 0,97)  . La présence de 

ces couples dans le modèle annonce la présence de multi colinéarité qui va impacté sur notre 

entrainement. Dans une paire de variables très corrélées, il est recommandé de ne conserver 

qu’une seule variable pour limiter la multi colinéarité et garantir la stabilité des modèles 

prédictifs(Chan et al., 2022).  

- (Wilson & Gallant, 2000)Profil curvature – NDBI : Profil curvature. Contrôle l’écoulement et 

l’érosion, ce qui influence la morphologie et la signature lithologique plus que l’indice bâti 

(NDBI)(Wilson & Gallant, 2000) 

- (Beven & Kirkby, 1979)TWI – NDWI : TWI, Indicateur topographique robuste pour l’humidité, 

intégrant pente et accumulation de flux(Beven & Kirkby, 1979) 

- (Wilson & Gallant, 2000)Plan curvature – Pente : Pente. Facteur fondamental pour la dynamique 

hydrologique et géomorphologique(Wilson & Gallant, 2000). 
- TPI – NDMI : NDMI, Plus pertinent pour l’humidité et la végétation que l’indice de position 

topographique (TPI)(Bocai Gao, 1999) 

- TWI – TRI : TWI, Intègre la rugosité et la pente pour modéliser l’humidité.(Sørensen et al., 2006) 

- (Wilson & Gallant, 2000)Pente – TPI :  Pente. Plus universelle et directement liée aux processus 

hydrologiques(Wilson & Gallant, 2000). 

- NDWI – TRI : NDWI, Direct pour cartographier l’eau et l’humidité de surface(McFeeters, 1996) 
 

Les variables prioritaires à retenir : Profil curvature, Pente, NDWI, NDMI et TWI.  
 

Figure N°5 : Matrice de corrélation des variables 
 

 

 

 

 

 

 

 

 
 

 

 

 
Source : Auteur. 

 

 

 

 

 
 

Source :Auteur. 
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Après la suppression de certaines variables, au total 10 variables retenues avec des faibles 

coefficients de corrélations figure 19. Ces variables ont fait l’objet d’entrainement. 

  

3.1. Configuration des paramètres 

La configuration des hyperparamètres représente une étape déterminante dans la modélisation 

en apprentissage automatique. Ces réglages, contrairement aux paramètres internes appris 

durant l’entraînement, sont fixés en amont et influencent fortement la capacité du modèle à 

apprendre, à généraliser et à éviter le surapprentissage. Dans leur étude, Weerts et Müller 

soulignent que la performance de nombreux algorithmes dépend directement du choix des 

hyperparamètres, ce qui justifie une sélection soigneuse via des stratégies comme la recherche 

par grille ou l’optimisation bayésienne(Weerts et al., 2020). Par ailleurs, une revue récente (A 

Ilemobayo et al., 2024) confirme que le tuning est essentiel pour améliorer la performance et 

la robustesse des modèles, et qu’il nécessite de pondérer bénéfices et coûts computationnels. 

Le modèle Random Forest a été retenu pour sa robustesse face au surapprentissage et sa 

capacité à modéliser des relations complexes et non linéaires entre variables. L’utilisation de 

200 arbres et d’une profondeur maximale de 25 permet de capturer les interactions tout en 

limitant la variance, Le paramètre max_features = sqrt favorise la diversité des arbres, 

améliorant la généralisation. L’option class_weight = balanced corrige le déséquilibre des 

classes, problématique fréquente en cartographie prédictive. Enfin, n_jobs = -1 optimise les 

performances computationnelles en exploitant le parallélisme. 

Le modèle SVM a été choisi pour sa capacité à gérer des frontières de décision complexes via 

le noyau RBF, adapté aux données non linéaires. C = 1.0 régule le compromis entre marge et 

erreur de classification. gamma = scale ajuste l’influence des points d’apprentissage, 

garantissant une meilleure stabilité. probability = true active l’estimation des probabilités, 

essentielle pour la cartographie prédictive. 

Le modèle XGBoost est reconnu pour ses performances élevées sur données tabulaires et sa 

robustesse face aux déséquilibres(Sadaiyandi et al., 2023). subsample = 0.8 et 

colsample_bytree = 0.8 introduisent du hasard pour réduire la corrélation entre arbres. 

learning_rate = 0.05 et max_depth = 6 assurent un bon compromis entre précision et 

généralisation. eval_metric = logloss mesure la qualité des prédictions probabilistes. 

Le réseau de neurones artificiel a été choisi pour sa capacité à modéliser des relations non 

linéaires complexes. L’optimiseur Adam améliore la convergence grâce à une adaptation 
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dynamique des taux d’apprentissage. La fonction Binary Crossentropy est standard pour la 

classification binaire. 

L’architecture (1 couche cachée de 6 neurones + sortie) associée à ReLU et Sigmoid, avec 

100 époques et validation_split = 0.2, assure robustesse et contrôle du surapprentissage. 

Tableau N°3 : Configuration des hyperparamètres des modèles d’apprentissage 

automatique 

Modèles Hyperparamètres Valeur  Description 

Random Forest 

 n_estimators 200 Nombre d’arbres dans la forêt 

 max_depth 25 Profondeur maximale des arbres 

 max_features sqrt Nombre de variables testées à 

chaque division 

 class_weight balanced Pondération des classes (gestion du 

déséquilibre) 

 n_jobs -1 Nombre de cœurs CPU utilisés 

Support Vector Machine 

 kernel rbf Fonction noyau 

 c 1.0 Paramètre de régularisation 

 gamma scale Influence des points 

d’apprentissage 

 probability true Estimation des probabilités de 

classe 

XGBOOST 

 n_estimators 300 Nombre d’arbres 

 learning_rate 0.05 Taux d’apprentissage 

 max_depth 6 Profondeur maximale des arbres 

 subsample 0.8 Proportion d’échantillons utilisés 

par arbre 

 colsample_bytree 0.8 Proportion de variables par arbre 

 eval_metric logloss Fonction d’évaluation du modèle 

 random_state 42 Graine aléatoire (reproductibilité) 

Artificial Neural Network 

 architecture Structure du 

réseau 

1 couche cachée (6 neurones) + 

couche de sortie (1 neurone) 

 activation_hidden ReLu Fonction d’activation (couche 

cachée) 

 activation_output Sigmoid Fonction d’activation (sortie) 

 optimizer Adam Algorithme d’optimisation 

 loss Binary 

crossentropy 

Fonction de perte 

 batch_size 32 Taille des lots 

 epochs 100 Nombre d’itérations 

 validation_split 0.2 Proportion des données pour la 

validation 

Source : Auteur 
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3.2. Modèle de Random Forest 
 

Le modèle Random Forest atteint 92 % de précision (AUC > 0,85) et un PR-AUC de 0,8150 

indiquant la bonne discrimination,  mais le rappel pour la classe Présence reste faible (0,74) 

malgré la stratification et la pondération. Les variables clés sont NDMI (humidité), la pente, 

NDVI et la courbure. La carte prédictive montre un faible potentiel global (<40 %), avec des 

zones favorables concentrées au sud/sud-est. 

Figure N°6 : Rapport de classification, importance des variables, courbe de Rooc et la 

courbe d’entrainement. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Source : Auteur 

 

3.3. Modèle de Support Vector Machine 

Le modèle SVM atteint 92 % d’accuracy et un AUC de 0,84 avec PR-AUC 0,8082, indiquant 

une bonne discrimination. La classe « Absence » est très bien prédite (Précision = 0,93 ; 

Rappel = 0,97), mais la classe « Présence » reste limitée (Précision = 0,85 ; Rappel = 0,71), 

avec risque de faux négatifs. Les variables clés sont NDMI (humidité, importance >0,12) et la 

pente (0,07).La carte prédictive montre un faible potentiel global (<40 %), avec zones 

favorables concentrées au sud/sud-est. 
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Figure N°7 : Rapport de classification, importance des variables, courbe de Rooc et la 

courbe d’entrainement. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Source : Auteur 

 

3.4. Modèle de XGBOOST 

Le modèle atteint 92 % d’accuracy et une AUC = 0,85 avec PR-AUC = 0,8166, indiquant une 

bonne discrimination. La classe « Absence » est très bien prédite (Précision = 0,93 ; 

Rappel = 0,97), mais la classe « Présence » reste limitée (Précision = 0,84 ; Rappel = 0,74), 

avec risque de faux négatifs. Les variables clés sont NDMI (humidité, importance 0,85) et la 

pente (0,11). La carte prédictive montre un faible potentiel global (<40 %), avec zones 

favorables concentrées au sud/sud-est et quelques poches isolées. 
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Figure N°8 : Rapport de classification, importance des variables, courbe de Rooc et la 

courbe d’entrainement 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Source : Auteur 

 

3.5. Modèle de Reseau de Neurone Artificiel 

Le modèle atteint 92 % d’accuracy et un AUC = 0,85 avec PR-AUC =0,67 , indiquant une 

bonne discrimination. La classe « Absence » est très bien prédite (Précision = 0,93 ; 

Rappel = 0,97), mais la classe « Présence » reste limitée (Précision = 0,85 ; Rappel = 0,73), 

avec risque de faux négatifs. Les variables clés sont NDMI (humidité) et la pente, confirmant 

leur rôle majeur dans la prédiction. La carte prédictive montre un faible potentiel global 

(<40 %), avec zones favorables concentrées au sud/sud-est et quelques poches modérées 

dispersées. 
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Figure N°9 : Rapport de classification, importance des variables, courbe de Rooc et la 

courbe d’entrainement. 

 

 

Source : Auteur. 
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Figure N°10 : les cartes prédictives des zones favorables selon le quatre modèles 

 

  

 

 

 

 

 

 

 

 

 

 

 

Source : Auteur. 

 

3.6. Comparaison des résultats  

Globalement, en analysant les deux indicateurs précision globale et l’indicateur de kappa, le 

Meilleur Modèle est XGBOOST, Il arrive en tête sur les deux indicateurs avec une précision 

globale de 0,9185 et un indice Kappa de 0,7359.  
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Tableau N°4 : Comparaison des modèles en fonction des indicateurs de performances 

Algorithmes Précision globale kappa 

Random Forest 0,9176 0,7353 

Support Vector Machine 0,9159 0,7211 

XGBOOST 0,9185 0,7359 

Reseau de Neurone Artificiel 0,9175 0,7312 

Source : Auteur. 

(John & Carranza, 2009)Le modèle XGBoost présente une accuracy de 0,92 et une AUC ROC 

de 0,85, ce qui le situe dans la plage haute des performances généralement rapportées en 

Mineral Prospectivity Mapping (MPM). Selon (John & Carranza, 2009), (Cheng, 2007) et 

(Zhu et al., 2025), les modèles basés sur des techniques de boosting ou d’ensembles atteignent 

généralement des AUC comprises entre 0,80 et 0,90, en fonction de la qualité des données et 

de l’échelle spatiale considérée. (Saito & Rehmsmeier, 2015)(He & Garcia, 2009) Cependant, 

l’écart entre le Macro F1-score (0,87) et le Weighted F1-score (0,92) met en évidence un 

déséquilibre de classes. Les performances élevées sur la classe Absence dominent la moyenne 

pondérée, tandis que la classe Présence demeure plus difficile à prédire, avec un rappel de 

0,74. Ce phénomène, courant dans les problèmes d’occurrences rares, montre que l’accuracy 

peut être trompeuse (He & Garcia, 2009). La littérature recommande donc de compléter 

l’analyse ROC/AUC par la courbe précision-rappel (PR) et le PR-AUC, plus adaptés aux 

contextes déséquilibrés (Saito & Rehmsmeier, 2015). De ce point de vue, le PR‑AUC obtenu 

(0,8166) confirme que XGBoost reste performant dans la détection des occurrences 

minérales, malgré l’asymétrie des données. (Zhiqiang Zhang et al., 2022) Toutefois, les faux 

négatifs (zones réellement favorables mais prédites comme défavorables) restent un enjeu 

critique en exploration minière. En effet, ils peuvent conduire à écarter des cibles 

potentiellement prometteuses, réduisant la probabilité de découvrir de nouvelles zones 

minéralisées. Cette limitation justifie la prudence dans l’interprétation du modèle et la 

nécessité d’intégrer plusieurs sources d’information dans la prise de décision. Dans un 

contexte minier, les zones affectées par des altérations hydrothermales notamment riches en 

argiles et micas présentent une capacité accrue de rétention d’humidité, générant ainsi un 

signal NDMI plus élevé. Plusieurs études, (Lawrence C. Rowan et al., 2005; van der Meer et 

al., 2012) notamment ont montré que les indices sensibles à l’humidité constituent des 

prédicteurs pertinents pour la détection indirecte de zones minéralisées. La pente, quant à elle, 
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contrôle les processus de ruissellement, d’infiltration et de convergence des flux, influençant 

directement la distribution spatiale de l’humidité et des produits d’altération. Son importance 

(0,11) est cohérente avec les modèles hydro-géomorphologiques classiques, notamment les 

principes issus de TOPMODEL, qui associent topographie et zones de saturation 

préférentielles (Beven & Kirkby, 1979). 

(John & Carranza, 2009 ; T. Chen & Guestrin, 2016) La courbe ROC, avec une AUC de 0,85, 

indique une bonne capacité discriminante, la courbe restant nettement au-dessus de la 

diagonale aléatoire et proche du coin supérieur gauche. Cette interprétation est conforme aux 

critères proposés par Fawcette (Tom Fawcett, 2006) pour l’évaluation des classificateurs 

probabilistes. Par ailleurs, la courbe d’apprentissage montre un écart réduit et stable entre les 

performances d’entraînement et de validation, traduisant une bonne capacité de généralisation 

et l’absence de sur-apprentissage marqué. Ce comportement est attendu pour des algorithmes 

de boosting régularisés tels que XGBoost, en particulier lorsque l’échantillonnage est 

suffisamment large et représentatif(Chen & Guestrin, 2016). La carte de favorabilité, 

structurée en classes de probabilité (> 80 %, 60–80 %, 40–60 %), constitue une traduction 

opérationnelle classique des résultats de MPM. Ce type de zonage probabiliste est 

couramment utilisé dans les évaluations de ressources minérales pour hiérarchiser les cibles 

en fonction du potentiel et du niveau d’incertitude associé(John & Carranza, 2009). Ce 

zonage permet : d’identifier les secteurs prioritaires, d’orienter les travaux de terrain et 

d’intégrer l’incertitude dans l’évaluation du potentiel minéral. Toutefois : la proximité des 

performances entre modèles implique qu’aucun modèle ne peut être considéré comme une 

garantie absolue d’efficacité ; le déséquilibre des classes et la présence de faux négatifs 

imposent de considérer les zones à prédiction incertaine comme des cibles à vérifier plutôt 

qu’à exclure ; les décisions opérationnelles doivent intégrer non seulement les cartes 

produites, mais aussi des données géologiques, structurales et de terrain. Ainsi, même si 

XGBoost offre les meilleures performances dans cette étude, son utilisation doit s’inscrire 

dans un cadre de triangulation multisource. 

 

4. Conclusion 

La République Démocratique du Congo, dotée d’un potentiel minéral exceptionnel, se trouve 

face au défi stratégique de transformer cette richesse en moteur de développement durable. 

Par cette recherche, nous avons démontré que l’intégration de l’Intelligence Artificielle (IA), 

des Systèmes d’Information Géographique (SIG) et de la télédétection constitue une approche 
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innovante pour la cartographie prédictive des ressources minières. Les résultats obtenus 

montrent que la combinaison de ces outils permet de structurer un cadre analytique cohérent 

pour l’identification de zones de favorabilité minérale. Un pipeline modulaire reposant sur 

quatre algorithmes complémentaires (Random Forest, SVM, XGBoost et ANN). Nos résultats 

confirment la pertinence des indices de télédétection, notamment le NDMI (indice d'humidité) 

et la pente, comme variables clés. Parmi le modèle évalués,  XGBoost s’est montré 

légèrement supérieur, avec une précision globale de 92 %, un indice Kappa de 0,7359, une 

AUC de 0,85 et un PR-AUC de 0,8166. L’analyse des importances des variables confirme le 

rôle dominant de NDMI, renforçant l’intérêt des signatures spectrales sensibles à l’humidité 

pour le type de minéralisation étudié. Cependant, cette supériorité demeure relative : les écarts 

de performance entre modèles restent faibles, et les résultats doivent être interprétés avec 

prudence, notamment en raison du déséquilibre des classes et du risque associé aux faux 

négatifs. Cette étude présente néanmoins certaines limites qu’il convient de souligner. Les 

performances des modèles ont été évaluées sur une zone d’étude spécifique et à partir de jeux 

de données présentant leurs propres contraintes de résolution, de qualité et de complétude. 

Les résultats dépendent de la représentativité des occurrences minérales disponibles, du choix 

des variables explicatives et des paramètres de modélisation. Par ailleurs, certaines sources 

d’incertitude spatiale et thématique propres aux données de télédétection peuvent influencer 

les prédictions. La transférabilité des modèles vers d’autres contextes géologiques, d’autres 

régions ou d’autres types de minéralisation nécessite une adaptation des variables, une 

recalibration des modèles et une validation locale indépendante. Les cartes de favorabilité 

produites doivent être interprétées comme des outils d’aide à la décision exploratoire et de 

priorisation des zones d’intérêt, et non comme une confirmation directe de présence minérale. 

Une interprétation non encadrée pourrait conduire à des conclusions techniques, économiques 

ou stratégiques excessives ; leur utilisation doit donc s’inscrire dans une démarche 

progressive intégrant validation de terrain et expertise géologique. 

Dans cette perspective, cette recherche confirme que l’IA appliquée aux géosciences constitue 

un levier stratégique pour la valorisation des ressources naturelles en RDC. Elle ouvre la voie 

à des développements futurs, tels que : l’intégration de données hyperspectrales pour 

améliorer la caractérisation minéralogique, l’exploration de méthodes de Deep Learning 

adaptées au traitement d’images satellites complexes, ainsi que la mise en place de 

plateformes nationales de centralisation des données géoscientifiques pour soutenir des 

approches prédictives robustes et reproductibles. 
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